首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
2.
CREB is activated in EPO induced HEL cells   总被引:1,自引:0,他引:1  
  相似文献   

3.
Human heat shock protein 90b gene ( hsp90b ) is a constitutively expressed heat shock gene existing in most of cell types tested that can be further induced by heat shock. Chloramphenical acetyl transferase (CAT) reporter plasmids driven by different regulatory fragments of hsp90b gene were constructed and transfected into Jurkat cells to explore the role of a cAMP response element (CRE) in the upstream of the gene. Results show that, in comparison with the wild type construct, a severe reduction (~2/3) in the increased folds of promoter activity induced by heat shock at 42℃ for 1 h was observed in a construct with CRE-containing fragment (-173/-91bp) deleted. Electrophoretic mobility shift assays (EMSA) showed that phosphorylated CRE-binding protein (CREB) in the nuclear extract of heat shocked Jurkat cells is specifically bound to the fragment. Additionally, both of the phosphorylation on CREB and the activity of protein kinase A (PKA) were found in Jurkat cells to be enhanced with extending time of heat shock treatment. Our results indicate that in addition to the intronic HSE/HSF pathway, phosphorylated CREB also participates in the heat shock induced expression of human hsp90b gene via its interaction with CRE which may be regulated by PKA-sig- naling pathway.  相似文献   

4.
5.
6.
cAMP 反应元件结合蛋白(cAMP response element-binding proteins,CREB)是一个哺乳动物转录因子家族,通过cAMP 反应元件(cAMP response element,CRE)调节cAMP和钙离子依赖性基因的表达.CREB4是CREB转录因子家族的一员.经酵母双杂交筛选人胎脑文库发现CREB4215-279aa可能与核转运因子kayopherinα2相互作用,提示karyopherinα2可能参与CREB4的跨膜转运过程.亚细胞定位结果显示,CREB4全长定位于细胞质,而缺失C端假定转膜结构域的CREB41-279aa蛋白则转移至细胞核内.荧光共定位进一步显示,CREB4和karyopherinα2共定位于细胞质中,CREB41-279aa和karyopherinα2共定位于细胞核中.结果提示C端被切除之后,CREB4被karyopherinα2转运到核内发挥转录作用.  相似文献   

7.
Y S Lin  M R Green 《Nature》1989,340(6235):656-659
  相似文献   

8.
9.
CBP-independent activation of CREM and CREB by the LIM-only protein ACT   总被引:29,自引:0,他引:29  
Fimia GM  De Cesare D  Sassone-Corsi P 《Nature》1999,398(6723):165-169
  相似文献   

10.
11.
以Ran结合蛋白RanBP1的保守区域作为探针,低严谨条件下杂交筛人视网膜cDNA文库,得到阳性克隆M3,它与鼠zhx-1基因高度同源。RH作图将其定位于8q24.1 ̄q24.3。拼接EST序列并填补缺口,得到M3 cDNA全长4934bp,与Northern blot得到的主要转录本长度一致。此cDNA全序列包括2622bp开放阅读框,编码873氨基酸,含有2种翻译调控元件uUAG和TTATTT  相似文献   

12.
Zhang J  Hupfeld CJ  Taylor SS  Olefsky JM  Tsien RY 《Nature》2005,437(7058):569-573
Hormones mobilize intracellular second messengers and initiate signalling cascades involving protein kinases and phosphatases, which are often spatially compartmentalized by anchoring proteins to increase signalling specificity. These scaffold proteins may themselves be modulated by hormones. In adipocytes, stimulation of beta-adrenergic receptors increases cyclic AMP levels and activates protein kinase A (PKA), which stimulates lipolysis by phosphorylating hormone-sensitive lipase and perilipin. Acute insulin treatment activates phosphodiesterase 3B, reduces cAMP levels and quenches beta-adrenergic receptor signalling. In contrast, chronic hyperinsulinaemic conditions (typical of type 2 diabetes) enhance beta-adrenergic receptor-mediated cAMP production. This amplification of cAMP signalling is paradoxical because it should enhance lipolysis, the opposite of the known short-term effect of hyperinsulinaemia. Here we show that in adipocytes, chronically high insulin levels inhibit beta-adrenergic receptors (but not other cAMP-elevating stimuli) from activating PKA. We measured this using an improved fluorescent reporter and by phosphorylation of endogenous cAMP-response-element binding protein (CREB). Disruption of PKA scaffolding mimics the interference of insulin with beta-adrenergic receptor signalling. Chronically high insulin levels may disrupt the close apposition of beta-adrenergic receptors and PKA, identifying a new mechanism for crosstalk between heterologous signal transduction pathways.  相似文献   

13.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

14.
A cyclic AMP- and phorbol ester-inducible DNA element   总被引:11,自引:0,他引:11  
M Comb  N C Birnberg  A Seasholtz  E Herbert  H M Goodman 《Nature》1986,323(6086):353-356
  相似文献   

15.
16.
17.
A Husain-Chishti  A Levin  D Branton 《Nature》1988,334(6184):718-721
Protein 4.9, first identified as a component of the human erythrocyte membrane skeleton, binds to and bundles actin filaments. Protein 4.9 is a substrate for various kinases, including a cyclic AMP(cAMP)-dependent one, in vivo and in vitro. We show here that phosphorylation of protein 4.9 by the catalytic subunit of cAMP-dependent protein kinase reversibly abolishes its actin-bundling activity, but phosphorylation by protein kinase C has no such effect. A quantitative immunoassay showed that human erythrocytes contain 43,000 trimers of protein 4.9 per cell, which is equivalent to one trimer for each actin oligomer in these red blood cells. As analogues of protein 4.9 have been identified together with analogues of other erythroid skeletal proteins in non-erythroid tissues of numerous vertebrates, phosphorylation and dephosphorylation of protein 4.9 may be the basis for a mechanism that regulates actin bundling in many cells.  相似文献   

18.
T Hunter  N Ling  J A Cooper 《Nature》1984,311(5985):480-483
The receptor for epidermal growth factor (EGF) is a 170,000-180,000 molecular weight single-chain glycoprotein of 1,186 amino acids. Its sequence suggests that it has an external EGF-binding domain, formed by the NH2-terminal 621 amino acids, linked to a cytoplasmic region by a single membrane-spanning segment. In the cytoplasmic portion, starting 50 residues from the membrane, there is a 250-residue stretch similar to the catalytic domain of the src gene family of retroviral tyrosine protein kinases, and, indeed, a tyrosine-specific protein kinase activity intrinsic to the receptor is stimulated when EGF is bound. Increased tyrosine phosphorylation of cellular proteins, detected in A431 cells following EGF binding, may be important in the mitogenic signal pathway. Tumour promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), counteract this increase, as well as causing loss of a high affinity class of EGF binding sites. The major receptor for TPA has been identified as the serine/threonine-specific Ca2+/phospholipid-dependent diacylglycerol-activated protein kinase, protein kinase C. By substituting for diacylglycerol, TPA stimulates protein kinase C. Protein kinase C phosphorylates purified EGF receptor at specific sites, and this reduces EGF-stimulated tyrosine protein kinase activity. TPA treatment of A431 cells increases serine and threonine phosphorylation of the EGF receptor at the same sites, which suggests that the reduction of EGF receptor kinase activity in TPA-treated cells is a consequence of the receptor's phosphorylation by the kinase. We have attempted to identify these phosphorylation sites and show here that protein kinase C phosphorylates threonine 654 in the human EGF receptor. This threonine is in a very basic sequence nine residues from the cytoplasmic face of the plasma membrane in the region before the protein kinase domain; it is thus in a position to modulate signalling between this internal domain and the external EGF-binding domain.  相似文献   

19.
Using cDNA microarray hybridization from a human testicular cDNA library, one gene exhibiting ten-fold difference at expression level between adult and embryo human testes was cloned and named NYD-SP9, which was believed to be involved in spermatogenesis. Southern blot hybridization results showed that NYD-SP9 expressed highly in testis but low in ovary. Protein motif analysis of this cDNA sequence revealed a cluster of phosphorylation sites, indicating its potential involvement in signal pathways during spermatogenesis. Furthermore, one transmembrane helix was predicted in N-terminal region, indicating that putative NYD-SP6 may be served as a transmembrane protein. The proximity of these potential phosphorylation sites to each other indicates that there may be interaction among these sites to regulate spermatogenesis. These findings suggested that protein kinase NYD-SP9 might play a role in male germ cell differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号