共查询到20条相似文献,搜索用时 91 毫秒
1.
设D是无平方因子的正整数,D=∏s i=1pi(s≥2),pi≡1(mod 6)(1≤i≤s)为奇素数。关于Diophantine方程x3+1=Dy2的初等解法至今仍未解决。主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod 12)为奇素数,且(q/13)=-1时,Diophantine方程x3+1=13qy2当q=7时有整数解(4 367,±30 252),(-1,0);当q≠7时仅有整数解(x,y)=(-1,0)。 相似文献
2.
利用初等方法证明了Diophantine方程x3-1=91y2仅有整数解(x,y)=(1,0)。 相似文献
3.
4.
运用初等方法及同余理论,研究丢番图方程正整数解。证明了Diophantine方程x3-1=38y2仅有两组正整数解(x,y)=(1,0)(7,3)。 相似文献
5.
关于Diophantine方程x3±1=Dy2至今仍未解决.论文利用同余式、平方剩余、Pell方程解的性质、递归序列证明:(1)p≡1(mod 12)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(1,0);(2)p≡1(mod 24)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(-1,0). 相似文献
6.
管训贵 《郑州大学学报(理学版)》2015,47(2)
设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2组正整数解.(B)若r≡11 mod 12,则方程H:x3+1=2pqry2仅有平凡解(x,y)=(-1,0);若r≡5 mod 12且(pq/r)=-1,则方程H最多有2组正整数解. 相似文献
7.
《云南民族大学学报(自然科学版)》2016,(6):529-530
利用递归序列、同余式、平方剩余以及Pell方程的解的性质证明了不定方程x~3-1=55y~2仅有整数解(x,y)=(1,0). 相似文献
8.
利用递归序列,同余式、平方剩余以及Pell方程的解的性质证明了不定方程x3-1=301y2仅有整数解(x,y)=(1,0). 相似文献
9.
证明了不定方程x2+4n=y3(n∈N,x≡0(mod2),x,y∈Z),其中当n≥3时整数解仅有(x,y,n)=(0,4k,3k),(±2×8k,2×4k,3k+1),(±11×8k,5×4k,3k+1),k∈N+. 相似文献
10.
设D 是无平方因子的正整数,D =∏si=1pi(s≥2),pi≡1(mod6)(1≤i≤s)为奇素数。关于Diophantine方程x3+1=Dy2的初等解法至今仍未解决。主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod12)为奇素数,且q( )13=-1时,Diophantine方程x3+1=13qy2当q=7时有整数解(4367,±30252),(-1,0);当q≠7时仅有整数解(x,y)=(-1,0)。
相似文献
相似文献
11.
段辉明 《重庆工商大学学报(自然科学版)》2005,22(2):191-193
利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1.0). 相似文献
12.
13.
王龙 《延安大学学报(自然科学版)》2014,(3):4-5,10
利用递归数列和同余式的相关性质证明了不定方程x3+1=122y2仅有整数解( x,y)=(-1,0),然后证明了不定方程x3+8=61y2仅有整数解( x,y)=(-2,0)。 相似文献
14.
15.
16.
17.
首先利用递归数列的方法证明了不定方程x3+1=158y2仅有整数解(x,y)=(-1,0),(293,±399)。进而证明了不定方程x3+8=79y2仅有整数解(x,y)=(-2,0),(586,±1596)。 相似文献
18.
应用递归数列、同余式证明了丢番图方程x3+1=201y2仅有整数解(x,y)=(-1,0),(440,±651). 相似文献
19.
刘杰 《邵阳学院学报(自然科学版)》2009,6(3):26-29
本文应用递归数列、同余式证明了丢番图方程x^3+1=201y^2仅有整数解(x,y)=(-1,0),(440,±651). 相似文献
20.