首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow stroma produces positive and negative growth regulators which constitute the hematopoietic microenvironment. As many tumors metastasize to the bones, these regulators may also influence tumor growth. Hematopoietic cytokines may indeed exert both positive and negative effect on tumor growth. We report that, when mixed with tumor cells. adherent bone marrow cells inhibit primary tumor growth and metastases formation in mice transplanted with Lewis lung carcinoma or B16 melanoma. Peritoneal macrophages or lymph node cells did not exert any influence. The tumor inhibition was apparently due to soluble factor(s) released by marrow stromal cells. In cocultures with B16 melanoma cells, adherent bone marrow cells exerted a significant antiproliferative effect which was increased by previous culture of the bone marrow cells with granulocyte-macrophage colony-stimulating factor but not with macrophage colony-stimulating factor. Neither neutralizing antibodies against tumor necrosis factor-alpha, transforming growth factor-beta or interferon alpha/beta nor addition of Escherichia coli lipopolysaccharide to generate inflammatory cytokines could affect the antiproliferative effect of bone marrow stromal cells. The bone marrow stroma factor(s) which inhibit tumor growth might, therefore, be a novel growth regulator.  相似文献   

2.
3.
Thrombospondins: from structure to therapeutics   总被引:2,自引:0,他引:2  
The thrombospondins (TSPs) are a family of five proteins that are involved in the tissue remodeling that is associated with embryonic development, wound healing, synaptogenesis, and neoplasia. These proteins mediate the interaction of normal and neoplastic cells with the extracellular matrix and surrounding tissue. In the tumor microenvironment, TSP-1 has been shown to suppress tumor growth by inhibiting angiogenesis and by activating transforming growth factor beta. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival, and through effects on vascular endothelial cell growth factor bioavailability. In addition, TSP-1 may affect tumor cell function through interaction with cell surface receptors and regulation of extracellular proteases. Whereas the role of TSP-1 in the tumor microenvironment is the best characterized, the other TSPs may have similar functions. (Part of a Multi-author Review).  相似文献   

4.
The growth and proliferation of metazoan cells are driven by cellular nutrient status and by extracellular growth factors. Growth factor receptors on cell surfaces initiate biochemical signals that increase anabolic metabolism and macropinocytosis, an actin-dependent endocytic process in which relatively large volumes of extracellular solutes and nutrients are internalized and delivered efficiently into lysosomes. Macropinocytosis is prominent in many kinds of cancer cells, and supports the growth of cells transformed by oncogenic K-Ras. Growth factor receptor signaling and the overall metabolic status of the cell are coordinated in the cytoplasm by the mechanistic target-of-rapamycin complex-1 (mTORC1), which positively regulates protein synthesis and negatively regulates molecular salvage pathways such as autophagy. mTORC1 is activated by two distinct Ras-related small GTPases, Rag and Rheb, which associate with lysosomal membranes inside the cell. Rag recruits mTORC1 to the lysosomal surface where Rheb directly binds to and activates mTORC1. Rag is activated by both lysosomal luminal and cytosolic amino acids; Rheb activation requires phosphoinositide 3-kinase, Akt, and the tuberous sclerosis complex-1/2. Signals for activation of Rag and Rheb converge at the lysosomal membrane, and several lines of evidence support the idea that growth factor-dependent endocytosis facilitates amino acid transfer into the lysosome leading to the activation of Rag. This review summarizes evidence that growth factor-stimulated macropinocytosis is essential for amino acid-dependent activation of mTORC1, and that increased solute accumulation by macropinocytosis in transformed cells supports unchecked cell growth.  相似文献   

5.
6.
The role of VEGF receptors in angiogenesis; complex partnerships   总被引:6,自引:0,他引:6  
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation. Received 15 September 2005; received after revision 11 November; accepted 24 November 2005  相似文献   

7.
Endothelial-like differentiation of dendritic cells (DCs) is a new phenomenon, and the mechanism is still elusive. Here, we show that the tumor microenvironment derived from the human esophageal squamous cell carcinoma (ESCC) cell line EC9706 can induce immature DCs (iDCs) differentiate toward endothelial cells, and become endothelial-like cells, but it has no obvious influence on mature DCs. During the course of endothelial-like differentiation of iDCs, a sustained activation of mitogen-activated protein kinase/extracelluar signal-regulated kinase1/2 (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) was detected. Incubation of iDCs with MEK phosphorylation inhibitor PD98059 blocked the MAPK/ERK1/2 and CREB phosphorylation as well as the endothelial-like differentiation of iDCs. Inhibition of vascular endothelial growth factor-A (VEGF-A) in the microenvironment with its antibody blocked the endothelial-like differentiation and the phosphorylation of MAPK/ERK1/2 and CREB. These data suggest that MAPK/ERK1/2 signaling pathway activated by VEGF-A could mediate endothelial-like differentiation of iDCs in the ESCC microenvironment.  相似文献   

8.
Human bone marrow-derived mesenchymal stem cells (MSC) home to injured tissues and have regenerative capacity. In this study, we have investigated in vitro the influence of apoptotic and necrotic cell death, thus distinct types of tissue damage, on MSC migration. Concordant with an increased overall motility, MSC migrated towards apoptotic, but not vital or necrotic neuronal and cardiac cells. Hepatocyte growth factor (HGF) was expressed by the apoptotic cells only. MSC, in contrast, revealed expression of the HGF-receptor, c-Met. Blocking HGF bioactivity resulted in significant reduction of MSC migration. Moreover, recombinant HGF attracted MSC in a dose-dependent manner. Thus, apoptosis initiates chemoattraction of MSC via the HGF/c-Met axis, thereby linking tissue damage to the recruitment of cells with regenerative potential.  相似文献   

9.
Indenone KR-62776 acts as an agonist of PPARγ without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPARγ, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPARγ is one of the key factors explaining the biological responses of the ligands. Received 04 March 2009; received after revision 13 March 2009; accepted 17 March 2009  相似文献   

10.
11.
The insulin-like growth factors (IGFs) are a ubiquitous family of growth factors, binding proteins and receptors that are involved in normal growth and development. They are also implicated in numerous pathological states, including malignancy. IGF-II is a commonly expressed growth factor in many tumors and may enhance tumor growth, acting via the overexpressed IGF-I receptor, a cell-surface tyrosine kinase receptor. The IGF-I receptor may be overexpressed due to mutations in tumor suppression gene products such as p53 and WT-1 or growth factors such as bFGF and PDGF. Thus, this family of growth factors, especially the IGF-I receptor, may present an excellent target for new therapeutic agents in the treatment of cancer and other disorders of excessive cellular proliferation.  相似文献   

12.
Cell cycle progression is regulated by both intracellular and extracellular control mechanisms. Intracellular controls ensure that cell cycle progression is stopped in response to irregularities such as DNA damage or faulty spindle assembly, whereas extracellular factors may determine cell fate such as differentiation, proliferation or programmed cell death (apoptosis). When extracellular factors bind to receptors at the outside of the cell, signal transduction cascades are activated inside the cell that eventually lead to cellular responses. We have shown previously that MAP kinase (MAPK), one of the proteins involved in several signal transduction processes, is phosphorylated early after mitosis and translocates to the nucleus around the restriction point. The activation of MAPK is independent of cell attachment, but does require the presence of growth factors. Moreover, it appears that in Chinese hamster ovary cells, a transformed cell line, growth factors must be present early in the G1 phase for a nuclear translocation of MAPK and subsequent DNA replication to occur. When growth factors are withdrawn from the medium immediately after mitosis, MAPK is not phosphorylated, cell cycle progression is stopped and cells appear to enter a quiescent state, which may lead to apoptosis. Furthermore, in addition to this growth-factor-regulated decision point in early G1 phase, another growth-factor-sensitive period can be distinguished at the end of the G1 phase. This period is suggested to correlate with the classical restriction point (R) and may be related to cell differentiation.  相似文献   

13.
The E5 oncoprotein of human papillomavirus (HPV) 16 plays an important role in early cervical carcinogenesis. Vascular endothelial growth factor (VEGF) plays a central role in switching on the angiogenic phenotype during early cervical carcinogenesis. However, the relationship between E5 and VEGF has not previously been examined. To clarify the regulatory role of E5 in VEGF expression, we transferred the E5 gene into various cell types. E5 increased VEGF expression. The addition of epidermal growth factor receptor (EGFR) inhibitor significantly suppressed VEGF expression, demonstrating that E5 stimulates VEGF expression through the activation of EGFR. E5-mediated EGFR activation was accompanied by phosphorylation of Akt and ERK1/2, which are also involved in VEGF expression. Furthermore, the mRNA stability of VEGF was not affected by E5, but VEGF promoter activity could be modulated by inhibitors of the EGFR, MEK-ERK1/2 and PI3K/Akt pathways in E5-expressing cells. Collectively, these novel results suggest that HPV 16 E5 increases VEGF expression by activating EGFR, MEK/ERK1/2 and PI3K/Akt. Received 23 November 2005; received after revision 10 January 2006; accepted 9 February 2006  相似文献   

14.
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called “minimal residual disease”. Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as “cancer dormancy”. Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for “dormancy” of tumor cells.  相似文献   

15.
Throughout growth and development,Dictyostelium cells secrete autocrine factors that accumulate in proportion to cell density. At sufficient concentration, these factors cause changes in gene expression. VegetativeDictyostelium cells continuously secrete prestarvation factor (PSF). The bacteria upon which the cells feed inhibit their response to PSF, allowing the cells to monitor their own density in relation to that of their food supply. At high PSF/bacteria ratios, which occur during late exponential growth, PSF induces the expression of several genes whose products are needed for cell aggregation. When the food supply has been depleted, PSF production declines, and a second density-sensing pathway is activated. Starving cells secrete conditioned medium factor (CMF), a glycoprotein of Mr 80 kDa that is essential for the development of differentiated cell types. Antisense mutagenesis has shown that cells lacking CMF cannot aggregate, and preliminary data suggest that CMF regulates cAMP signal transduction. Calculations indicate that a mechanism of simultaneously secreting and recognizing a signal molecule, as used byDictyostelium to monitor cell density, could also be used to determine the total number of cells in a tissue.  相似文献   

16.
17.
18.
19.
Lysophosphatidic acid (LPA) is a low-molecular-weight lipid growth factor, which binds to G-protein-coupled receptors. Previous studies have shown that LPA enhances vascular endothelial growth factor-A (VEGF-A) expression in cancer cells and promotes angiogenesis process. However, the roles of LPA in lymphatic vessel formation and lymphangiogenesis have not been investigated. Here, we demonstrated that LPA up-regulated VEGF-C mRNA and protein expressions in human umbilical vein endothelial cells (HUVECs). Furthermore, the expression levels of lymphatic markers, including Prox-1, LYVE-1 and podoplanin, were enhanced in LPA-stimulated tube forming endothelial cells in vitro and in vivo. Moreover, we showed that pretreatment with MAZ51, a VEGFR-3 kinase inhibitor, and introduction of VEGFR-3 siRNA suppressed LPA-induced HUVEC tube formation and lymphatic marker expressions. These results demonstrated that LPA enhances expression of lymphatic markers through activating VEGF-C receptors in endothelial cells. This study provides basic information that LPA might be a target for therapeutics against lymphangiogenesis and tumor metastasis.  相似文献   

20.
Fibroblast growth factor 2 (FGF2) is one of the most studied growth factors to date. Most attention has been dedicated to the smallest, 18kDa FGF2 variant that is released by cells and acts through activation of cell-surface FGF-receptor tyrosine kinases. There are, however, several higher molecular weight (HMW) variants of FGF2 that rarely leave their producing cells, are retained in the nucleus and act independently of FGF-receptors (FGFR). Despite significant evidence documenting the expression and intracellular trafficking of HMW FGF2, many important questions remain about the physiological roles and mechanisms of action of HMW FGF2. In this review, we summarize the current knowledge about the biology of HMW FGF2, its role in disease and areas for future investigation. Received 28 July 2008; received after revision 18 August 2008; accepted 22 August 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号