首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. The paternally expressed gene insulin-like growth-factor 2 (Igf2) is separated by approximately 100 kb from the maternally expressed noncoding gene H19 on mouse distal chromosome 7. Differentially methylated regions in Igf2 and H19 contain chromatin boundaries, silencers and activators and regulate the reciprocal expression of the two genes in a methylation-sensitive manner by allowing them exclusive access to a shared set of enhancers. Various chromatin models have been proposed that separate Igf2 and H19 into active and silent domains. Here we used a GAL4 knock-in approach as well as the chromosome conformation capture technique to show that the differentially methylated regions in the imprinted genes Igf2 and H19 interact in mice. These interactions are epigenetically regulated and partition maternal and paternal chromatin into distinct loops. This generates a simple epigenetic switch for Igf2 through which it moves between an active and a silent chromatin domain.  相似文献   

3.
4.
Pelger-Hu?t anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41-43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope-heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.  相似文献   

5.
Mammalian telomeres have epigenetic marks of constitutive heterochromatin. Here, we study the impact of telomere length on the maintenance of heterochromatin domains at telomeres. Telomerase-deficient Terc(-/-) mice with short telomeres show decreased trimethylation of histone 3 at Lys9 (H3K9) and histone 4 at Lys20 (H4K20) in telomeric and subtelomeric chromatin as well as decreased CBX3 binding accompanied by increased H3 and H4 acetylation at these regions. Subtelomeric DNA methylation is also decreased in conjunction with telomere shortening in Terc(-/-) mice. In contrast, telomere repeat factors 1 and 2 show normal binding to telomeres independent of telomere length. These results indicate that loss of telomeric repeats leads to a change in the architecture of telomeric and subtelomeric chromatin consisting of loss of heterochromatic features leading to a more 'open' chromatin state. These observations highlight the importance of telomere repeats in the establishment of constitutive heterochromatin at mammalian telomeres and subtelomeres and point to histone modifications as important in counting telomere repeats.  相似文献   

6.
7.
8.
9.
DNA methylation inhibits gene expression in animal cells, probably by affecting chromatin structure. Biochemical studies suggest that this process may be mediated by methyl-specific binding proteins that recruit enzymatic machinery capable of locally altering histone modification. To test whether DNA methylation actually has a role in the assembly of chromatin during normal development, we used cell transfection and a transgene construct genetically programmed to be either methylated or unmethylated in all cell types of the mouse. Chromatin immunoprecipitation (ChIP) analysis shows that the presence of DNA methylation brings about the deacetylation of histone H4 and methylation of Lys9 of histone H3 (H3 Lys9) and prevents methylation of Lys4 of histone H3 (H3 Lys4), thus generating a structure identical to that of methylated sequences in the genome. These results indicate that the methylation pattern established in early embryogenesis is profoundly important in setting up the structural profile of the genome.  相似文献   

10.
11.
12.
13.
14.
Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression.  相似文献   

15.
Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.  相似文献   

16.
17.
18.
19.
20.
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by early contractures of elbows and Achilles tendons, slowly progressive muscle wasting and weakness, and a cardiomyopathy with conduction blocks which is life-threatening. Two modes of inheritance exist, X-linked (OMIM 310300) and autosomal dominant (EDMD-AD; OMIM 181350). EDMD-AD is clinically identical to the X-linked forms of the disease. Mutations in EMD, the gene encoding emerin, are responsible for the X-linked form. We have mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus. This region contains the lamin A/C gene (LMNA), a candidate gene encoding two proteins of the nuclear lamina, lamins A and C, produced by alternative splicing. We identified four mutations in LMNA that co-segregate with the disease phenotype in the five families: one nonsense mutation and three missense mutations. These results are the first identification of mutations in a component of the nuclear lamina as a cause of inherited muscle disorder. Together with mutations in EMD (refs 5,6), they underscore the potential importance of the nuclear envelope components in the pathogenesis of neuromuscular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号