首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The restricted gene expression pattern of a differentiated cell can be reversed by fusion of the somatic cell with a more developmentally potent cell type, such as an embryonic stem (ES) cell. During this reprogramming process, somatic cells obtain most of the characteristics of pluripotent cells. Reactivation of an inactive X chromosome (Xi) is an important epigenetic marker confirming the pluripotent reprogramming of somatic cells. Female somatic cells contain one active X chromosome (Xa) and one Xi, and following the fusion of these cells with male ES cells, the Xi becomes activated, resulting in XaXaXaY fusion hybrid cells. To monitor Xi reactivation, transgenic female neural stem cells (fNSCs) carrying a green fluorescent protein (GFP) reporter gene expressed on the Xa (X-GFP), but not on the Xi, were used for reprogramming. XaXiGFP NSCs, whose GFP reporter was silenced, were fused with HM1 ES cells (XY) to induce pluripotent reprogramming. The XiGFP of NSCs were found to be activated on day 4 post-fusion, indicating reactivation of the Xi. Hybrid cells showed pluripotent cell-specific characteristics cells including inactivation of the NSC marker Nestin, DNA demethylation of Oct4, DNA methylation of Nestin, and reactivation of the Xi. Following differentiation of the (GFP-positive) hybrid cells through embryoid body formation, the proportion of GFP-negative cells was found to be approximately 26?%, indicating that there was random inactivation of one of the three Xas. Here, we showed that the Xi of somatic cells is reprogrammed to the Xa state and that cellular differentiation occurs randomly, i.e., regardless of the Xa or Xi state, indicating that the memory of the Xi of somatic cells has been erased and reset to the ground state (i.e., inner cell mass-like state), indicating that random X-chromosome inactivation occurs upon differentiation.  相似文献   

6.
7.
8.
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.  相似文献   

9.
10.
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.  相似文献   

11.
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.  相似文献   

12.
The neurotrophic factors in non-neuronal tissues   总被引:17,自引:0,他引:17  
Although neurotrophic factors are defined as molecules that maintain neuronal cells, they possess a range of functions outside the nervous system. For example, glial cell line-derived neurotrophic factor is essential for ureteric branching in kidney morphogenesis and for regulating the fate of stem cells during spermatogenesis. Leukemia inhibitory factor, a member of the interleukin-6 (IL-6) ciliary neurotrophic factor family, inhibits differentiation of embryonic stem cells, induces tubulogenesis in the embryonic kidney, and regulates sperm differentiation. Other IL-6 family members are important in cardiac differentiation and they have pleiotropic functions in the hematopoietic and immune systems. Although neurotrophin receptors have been found on a number of non-neuronal tissues, they represent mostly truncated receptor isoforms that are incapable of signal transduction and may have scavenger or dominant negative functions. However, several examples can be presented of essential non-neuronal functions played by neurotrophins in e.g., cardiac, hair follicle, and vascular differentiation, and the maintenance of immune cells.  相似文献   

13.
To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.  相似文献   

14.
15.
Chitotriosidase secreted by activated human macrophages has been implicated in the defence against chitin-bearing pathogens. The antifungal properties of human chitotriosidase were investigated here following retroviral vector-mediated gene transfer of the open reading frame of the chitotriosidase gene into Chinese hamster ovary cells. A chitinase assay confirmed that the engineered cells secreted recombinant chitotriosidase constitutively. Two dimensional gel electrophoresis and western blotting indicated that the recombinant protein is the major, chitin-binding, fifty kilodalton isoform. Culture medium conditioned by the transduced cells inhibited growth of isolates of Aspergillus niger, Candida albicans and Cryptococcus neoformans. Furthermore, longevity was significantly increased in a mouse model of cryptococcosis when cells transduced with the chitotriosidase gene and encapsulated in alginate microspheres were implanted subcutaneously in the animals. Engraftment of microcapsules containing cells transduced with the chitotriosidase gene has the potential to combat infections caused by chitinous pathogens through the prolonged delivery of recombinant chitotriosidase. Received 29 November 2008; received after revision 11 January 2009; accepted 13 January 2009  相似文献   

16.
17.
Production of transgenic birds   总被引:1,自引:0,他引:1  
R M Shuman 《Experientia》1991,47(9):897-905
The avian embryo presents a tremendous challenge for those interested in accessing and manipulating the avian germ line. By far the most successful method of gene transfer is by retrovirus vector. The efficacy of retrovirus vectors has been demonstrated by germ line insertion of replication-competent retroviruses as well as the insertion of replication-defective retrovirus vectors carrying bacterial marker genes. Retroviral vectors have also been shown to be useful for the transfer and expression of genes in somatic cells. Further, germ line transgenesis has been reported in both the chicken and the Japanese quail. In addition, several alternative gene transfer methods are under development. These include transfection of avian sperm, development of germ line chimeras using primordial germ cells and blastodermal cells, and the development of embryonic stem cell lines. Potentially, basic research and the poultry industry will derive substantial benefit from this revolutionary technology.  相似文献   

18.
19.
The avian embryo presents a tremendous challenge for those interested in accessing and manipulating the avian germ line. By far the most successful method of gene transfer is by retrovirus vector. The efficacy of retrovirus vectors has been demonstrated by germ line insertion of replication-competent retroviruses as well as the insertion of replication-defective retrovirus vectors carrying bacterial marker genes. Retroviral vectors have also been shown to be useful for the transfer and expression of genes in somatic cells. Further, germ line transgenesis has been reported in both the chicken and the Japanese quail. In addition, several alternative gene transfer methods are under development. These include transfection of avian sperm, development of germ line chimeras using primordial germ cells and blastodermal cells, and the development of embryonic stem cell lines. Potentially, basic research and the poultry industry will derive substantial benefit from this revolutionary technology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号