首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
To explain the lower atmospheric CO2 concentrations during glacial periods, it has been suggested that the productivity of marine phytoplankton was stimulated by an increased flux of iron-bearing dust to the oceans. One component of this theory is that iron-an essential element/nutrient for nitrogen-fixing organisms-will increase the rate of marine nitrogen fixation, fuelling the growth of other marine phytoplankton and increasing CO2 uptake. Here we present data that questions this hypothesis. From a sediment core off the northwestern continental margin of Mexico, we show that denitrification and phosphorite formation-processes that occur in oxygen-deficient upwelling regions, removing respectively nitrogen and phosphorus from the ocean-declined in glacial periods, thus increasing marine inventories of nitrogen and phosphorus. But increases in phosphorus were smaller and less rapid, leading to increased N/P ratios in the oceans. Acknowledging that phytoplankton require nitrogen and phosphorus in constant proportions, the Redfield ratio, and that N/P ratios greater than the Redfield ratio are likely to suppress nitrogen fixation, we suggest therefore that marine productivity did not increase in glacial periods in response to either increased nutrient inventories or greater iron supply.  相似文献   

2.
The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.  相似文献   

3.
Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3-4 degrees C warmer than at present and atmospheric CO2 concentrations were twice as high as today, the Antarctic ice sheets may have been unstable. Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles. But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets. Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1-23.7 Myr ago). Three rapidly deposited glacimarine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mi1 event).  相似文献   

4.
Wang  LiBo  Yang  ZuoSheng  ZHang  RongPing  Fan  DeJiang  Zhao  MeiXun  Hu  BangQi 《科学通报(英文版)》2011,56(15):1588-1595
Sea surface temperature (SST) records in the South Yellow Sea during the last 6200 years are reconstructed by the unsaturation index of long-chain alkenones (K 37 U ’) in sediment core ZY2 from the central mud area.The SST records varied between 14.1 and 16.5°C (15.6°C on average),with 3 phases:(1) A high SST phase at 6.2-5.9 cal ka BP;(2) A low and intensely fluctuating SST phase at 5.9-2.3 cal ka BP;and (3) A high and stable SST phase since 2.3 cal ka BP.Variation of the SST records is similar to intensity of the Kuroshio Current (KC),and corresponds well in time to global cold climate events.However,the amplitude of the SST response to cooling events was significantly different in different phases.The SST response to global cooling event was weak while the KC was strong;and the SST response was strong while the KC was weak.The difference in amplitude of the SST response is possibly caused by the modulation effect of the Yellow Sea Warm Current which acts as a shelf branch of the KC and a compensating current induced by the East Asia winter monsoon.The warm waters brought by the Yellow Sea Warm Current cushion the SST decrease induced by climate cooling,and both the Kuroshio and East Asian winter monsoon play important roles in the modulation mechanism.The SST records display a periodicity of 1482 years.The same period was found in the KC records,indicating that variation of the SST records in the central South Yellow Sea is strongly affected by KC intensity.The same period was also found in Greenland ice cores and North Atlantic and Arabian Sea sediment cores,showing a regional response of marine environmental variability in the East China Seas to that in the global oceans.  相似文献   

5.
Spatial coupling of nitrogen inputs and losses in the ocean   总被引:1,自引:0,他引:1  
Deutsch C  Sarmiento JL  Sigman DM  Gruber N  Dunne JP 《Nature》2007,445(7124):163-167
Nitrogen fixation is crucial for maintaining biological productivity in the oceans, because it replaces the biologically available nitrogen that is lost through denitrification. But, owing to its temporal and spatial variability, the global distribution of marine nitrogen fixation is difficult to determine from direct shipboard measurements. This uncertainty limits our understanding of the factors that influence nitrogen fixation, which may include iron, nitrogen-to-phosphorus ratios, and physical conditions such as temperature. Here we determine nitrogen fixation rates in the world's oceans through their impact on nitrate and phosphate concentrations in surface waters, using an ocean circulation model. Our results indicate that nitrogen fixation rates are highest in the Pacific Ocean, where water column denitrification rates are high but the rate of atmospheric iron deposition is low. We conclude that oceanic nitrogen fixation is closely tied to the generation of nitrogen-deficient waters in denitrification zones, supporting the view that nitrogen fixation stabilizes the oceanic inventory of fixed nitrogen over time.  相似文献   

6.
Climate-driven trends in contemporary ocean productivity   总被引:6,自引:0,他引:6  
Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.  相似文献   

7.
The loess-paleosol sequence in China records abundant and valuable information on the global and regional climate changes. Biological record from the loess sequence is the most direct evidence on variation in pattern of paleo-atmospheric circulation and changes in winter and summer monsoon. A new record of climatic instability, which occurred in the Loess Plateau during the late glacial period, is presented. Through the study of terrestrial mollusks from three loess sequences, the authors intend to characterize the biological response process to rapid climate change and to learn the mechanisms driving the instable climate changes and the possible linkage in different regions. The result shows the striking consistent variability in the ratio records of three mollusk sequences of the late glacial, indicating apparent rapid climate fluctuations. Correlation of our three mollusk records with the oxygen isotopic records from Greenland ice cores and foraminifera1 records from the Northeast Pacific Ocean reveals similar instability climate during the late glacial period, which provides us a new thought probing the climate instability observed in the North Atlantic, the North Pacific and the Loess Plateau. The low-level atmospheric circulation in the Northern Hemisphere may be one possible way to link the unstable climate patterns observed in the above three regions.  相似文献   

8.
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.  相似文献   

9.
青藏高原过去2000年来气候环境变化研究   总被引:1,自引:0,他引:1  
以现代过程研究为先导,以冰芯记录为手段,进行气候环境信息的挖掘,将影响环境的自然与人为因素进行整体研究,对环境长期演变过程中的重大自然事件和人为事件,特别是灾害事件进行剖析,从而提示青藏高原过去2000年来气候环境的变化特征与机理;阐明极低温环境下的微生物演化特征;揭示历史时期青藏高原大气温室气体含量变化的原因及其与气候变化之间的关系,并评价人类活动对环境的影响。  相似文献   

10.
全球一半以上人口生活在季风区。为了研究温室气候时期全球季风气候的特征,利用耦合气候数值模式(Community Earth System Model),模拟了距今最近的温室气候时期——始新世(40 Ma B.P.)的全球季风气候特征。该模式全面考虑了大气、海洋、陆地、陆冰、海冰、植被等气候子系统的耦合作用,大气CO2含量设为工业革命前的4倍。模拟结果表明,在始新世时期,全球季风的范围、强度与现今大体相当,但是区域上,各季风区的特征与现今有明显差异。  相似文献   

11.
The Milankovitch theory of climate change proposes that glacial-interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination, because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations.  相似文献   

12.
Genty D  Blamart D  Ouahdi R  Gilmour M  Baker A  Jouzel J  Van-Exter S 《Nature》2003,421(6925):833-837
The signature of Dansgaard-Oeschger events--millennial-scale abrupt climate oscillations during the last glacial period--is well established in ice cores and marine records. But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of (14)C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel, and deep-sea records, indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/- 0.6 and 67.4 +/- 0.9 kyr ago.  相似文献   

13.
Gupta AK  Anderson DM  Overpeck JT 《Nature》2003,421(6921):354-357
During the last ice age, the Indian Ocean southwest monsoon exhibited abrupt changes that were closely correlated with millennial-scale climate events in the North Atlantic region, suggesting a mechanistic link. In the Holocene epoch, which had a more stable climate, the amplitude of abrupt changes in North Atlantic climate was much smaller, and it has been unclear whether these changes are related to monsoon variability. Here we present a continuous record of centennial-scale monsoon variability throughout the Holocene from rapidly accumulating and minimally bioturbated sediments in the anoxic Arabian Sea. Our monsoon proxy record reveals several intervals of weak summer monsoon that coincide with cold periods documented in the North Atlantic region--including the most recent climate changes from the Medieval Warm Period to the Little Ice Age and then to the present. We therefore suggest that the link between North Atlantic climate and the Asian monsoon is a persistent aspect of global climate.  相似文献   

14.
Dual modes of the carbon cycle since the Last Glacial Maximum   总被引:9,自引:0,他引:9  
Smith HJ  Fischer H  Wahlen M  Mastroianni D  Deck B 《Nature》1999,400(6741):248-250
The most conspicuous feature of the record of past climate contained in polar ice is the rapid warming which occurs after long intervals of gradual cooling. During the last four transitions from glacial to interglacial conditions, over which such abrupt warmings occur, ice records indicate that the CO2 concentration of the atmosphere increased by roughly 80 to 100 parts per million by volume. But the causes of the atmospheric CO2 concentration increases are unclear. Here we present the stable-carbon-isotope composition (delta 13 CO2) of CO2 extracted from air trapped in ice at Taylor Dome, Antarctica, from the Last Glacial Maximum to the onset of Holocene times. The global carbon cycle is shown to have operated in two distinct primary modes on the timescale of thousands of years, one when climate was changing relatively slowly and another when warming was rapid, each with a characteristic average stable-carbon-isotope composition of the net CO2 exchanged by the atmosphere with the land and oceans. delta 13 CO2 increased between 16.5 and 9 thousand years ago by slightly more than would be estimated to be caused by the physical effects of a 5 degrees C rise in global average sea surface temperature driving a CO2 efflux from the ocean, but our data do not allow specific causes to be constrained.  相似文献   

15.
A continuous pollen record from the Zoige Basin in the northeastern Qinghai-Tibetan Plateau not only provides information on the vegetation and climate changes during the last two glacial/interglacial cycles, hut also gives proof to establish the time scale of the upper 60 m of the RM core. Subalpine spruce-fir forests colonized the Zoige Basin during the interglacials and interstadials, implying warm and wet climate conditions. Alpine periglacial desert or dry desert may have existed during the penultimate glacial and the last glacial maxima, respectively. Alpine sedge meadow dominated the landscape during MIS 4. The MIS 3 is punctuated by a number of stadials similar to those documented in the Guliya and GISP2 ice cores, as indicated by repeated rise and fall of subalpine spruce-fir forests. Our pollen record reveals a regional climate history similar to those from the neighboring sites, including the Arabian Sea and the Guliya ice core, and thus supports the notion that the Qinghai-Tibetan Plateau acts as an important link between climatic events in the North Atlantic realm and the Asian monsoon domain.  相似文献   

16.
Bains S  Norris RD  Corfield RM  Faul KL 《Nature》2000,407(6801):171-174
The onset of the Palaeocene/Eocene thermal maximum (about 55 Myr ago) was marked by global surface temperatures warming by 5-7 degrees C over approximately 30,000 yr (ref. 1), probably because of enhanced mantle outgassing and the pulsed release of approximately 1,500 gigatonnes of methane carbon from decomposing gas-hydrate reservoirs. The aftermath of this rapid, intense and global warming event may be the best example in the geological record of the response of the Earth to high atmospheric carbon dioxide concentrations and high temperatures. This response has been suggested to include an intensified flux of organic carbon from the ocean surface to the deep ocean and its subsequent burial through biogeochemical feedback mechanisms. Here we present firm evidence for this view from two ocean drilling cores, which record the largest accumulation rates of biogenic barium--indicative of export palaeoproductivity--at times of maximum global temperatures and peak excursion values of delta13C. The unusually rapid return of delta13C to values similar to those before the methane release and the apparent coupling of the accumulation rates of biogenic barium to temperature, suggests that the enhanced deposition of organic matter to the deep sea may have efficiently cooled this greenhouse climate by the rapid removal of excess carbon dioxide from the atmosphere.  相似文献   

17.
利用耦合气候模式(GFDL-CM2.1)研究变动气候背景下全球平均降水和温度的变化。不同情景CO2 强迫试验表明, 降水变化存在明显的迟滞效应。全球平均降水与地表温度的变化存在显著的线性关系, 但是降水同时也受到CO2 浓度的直接影响。在CO2 增加又恢复的试验中, 降水变化滞后于地表温度变化, 出现降水 “迟滞效应”。在CO2 增加过程中, 温室效应增强会立即导致大气长波吸收增强, 大气获得的净辐射能量增加, 为维持大气能量收支平衡, 地面向上潜热通量受到抑制, 形成CO2 增加对降水的抑制效应。随之而来的温度上升则主要引起大气层顶出射长波辐射以及大气对地表的长波回辐射增加, 大气净辐射能量减少, 地面潜热通量增加, 从而引起降水的增加。在CO2 减少过程中, 情况正好相反, 温室效应减弱会增加降水, 而温度降低会减少降水。温度和CO2 对降水的不同影响决定了降水的迟滞效应。  相似文献   

18.
The paleoclimatic events and cause in the Okinawa Trough during 50 kaBP   总被引:1,自引:0,他引:1  
Planktonic foraminiferal δ 18O record for core DGKS9603 from the Okinawa Trough shows a series of climatic fluctuations and sudden cooling events in short time scale during 50 kaBP, which appear to correlate closely to the Younger Dryas and Heinrich events H1-5 recorded in Chinese loess, the South China Sea, the North Atlantic cores and the Greenland ice cores. Three polarity reversal events, correlating to Gothenburg, Mungo and Laschamp events, approximately correspond to Heinrich events H1, H3 and H5 respectively, which could be a cause of global climate changes. The δ 18O curve of the Okinawa Trough is well associated with the grain size record of the Lijiayuan loess profile in northwestern China and is somewhat different from the climate fluctuations documented in the Greenland ice cores. These correlation results indicate that regional factors play an important role in controlling the climate changes in the East Asia, and the East Asian Monsoon could be the prominent regional controlling factor.  相似文献   

19.
Nitrogen limitation constrains sustainability of ecosystem response to CO2   总被引:5,自引:0,他引:5  
Reich PB  Hobbie SE  Lee T  Ellsworth DS  West JB  Tilman D  Knops JM  Naeem S  Trost J 《Nature》2006,440(7086):922-925
Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.  相似文献   

20.
森林土壤是温室气体重要的源和汇。探讨不同森林管理和全球大气变化下土壤温室气体通量特征,为有效减少温室气体排放及森林可持续管理等提供参考。笔者从森林土壤温室气体(forest soil green house gases)、森林管理(forest mangement)和全球大气变化(global atmospheric change)3个关键研究点,查阅近年来相关研究成果,归纳森林管理和全球大气变化下土壤温室气体通量的一般性模式。CO2、CH4和N2O是3种重要温室气体,其通量间存在协同、消长和随机型耦合关系。森林管理如火烧、采伐和造林等显著影响土壤温室气体通量。一般情况下,火烧导致土壤N2O通量降低,CH4吸收量增加,CO2通量因火烧类型、火烧强度、生态系统类型不同出现增加、减低和无影响3种结果; 采伐通常导致土壤CO2、CH4和N2O排放增加; 造林可使土壤CO2排放减少,对N2O和CH4通量的影响随生态系统类型、造林树种等而改变。全球大气变化如CO2浓度升高、氮沉降和气温升高影响森林土壤温室气体通量。通常,CO2浓度升高导致土壤CO2和N2O排放量增加,CH4吸收量降低; 氮沉降促进土壤N2O排放、抑制CH4吸收。气温升高导致土壤CO2和N2O排放增加。森林管理和全球大气变化对土壤温室气体通量的综合影响是非叠加的,有效的森林管理可能改变土壤温室气体通量对全球大气变化的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号