首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以柠檬酸钠作为表面活性剂调控六方片状铁醇盐(Fe-EG)的生长过程,实现Fe-EG纳米片的厚度可控制备,并将其作为前驱体在N_2条件下450℃热处理3 h,获得多孔超薄Fe_3O_4/C纳米片。利用X线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、拉曼光谱(Raman)、透射电子显微镜(TEM)和红外光谱仪(IR)等分析方法对Fe-EG前驱体和Fe_3O_4/C纳米片进行物相测定和微结构观察,并分析了Fe-EG纳米片的生长机制。结果表明:Fe_3O_4/C纳米片作为锂电池负极材料表现出优异的电化学性能,0.4 A/g电流密度条件下循环100次后高达898.3m A·h/g的放电比容量以及5 A/g条件下518.3 m A·h/g的倍率性能。  相似文献   

2.
纳米结构铁基金属氧化物/氢氧化物(如Fe_2O_3,Fe_3O_4及FeOOH等),因具有较高的理论比电容和较宽的负向电位窗口,被认为是一种潜在的理想超级电容器负极材料,但Fe基电极大多数具有较差的导电性及不稳定的电化学性能,使其实际应用受到阻碍.为此,科研人员为提高其导电性及电化学稳定性做了大量的工作.该文概述提高Fe基纳米结构负极材料导电性和电化学稳定性的有效方法,介绍Fe基纳米结构负极材料在纳米结构设计和合成方面的最新研究进展,展望其未来的应用前景.  相似文献   

3.
采用具有低软化点的煤沥青作为碳源,原位包覆Fe_3O_4纳米粒子制备Fe_3O_4/煤沥青基碳复合材料(简称Fe_3O_4/C),并研究复合物作为锂离子电池电极材料的性能.结果表明,所得煤沥青碳呈类石墨烯状包裹在Fe_3O_4纳米粒子周围,包覆前后所得产物的尺寸变化不大,约为200~400nm.XPS和热重分析证明复合物中存在C、O和Fe元素且Fe_3O_4含量为92.4%.采用交流阻抗、倍率性能和循环稳定性等对复合物进行电化学性能测试,所得的产品Fe_3O_4/C-700的电阻值为26.80Ω,比纯品Fe_3O_4的电阻值(126.04Ω)明显降低,说明煤沥青基碳具有提升Fe_3O_4导电性的功能.在0.1A·g~(-1)的电流密度下,Fe_3O_4/C-700复合物的放电比容量达993mA·h·g~(-1),比单纯Fe_3O_4的放电比容量(821mA·h·g~(-1))增加约21%;在0.4A·g~(-1)的电流密度下循环100次效率保留值为80.48%,表现较好的循环稳定性.所得煤沥青基类石墨烯碳原位包覆Fe_3O_4纳米粒子,有效抑制了后者在锂离子充放电过程中体积膨胀引起的聚集,同时增强了Fe_3O_4纳米粒子的导电性,使其表现出令人满意的电化学性能.  相似文献   

4.
采用微波液相辅助法及退火处理制备了纳米花结构的钴酸锌(ZnCo_2O_4),并考察了不同退火温度对材料性能的影响。利用X射线衍射(XRD)仪、扫描电镜(SEM)、循环伏安(CV)法、电化学阻抗谱(EIS)和恒流充放电测试,对所制备材料的晶体结构、形貌以及电化学性能进行了分析。分析结果表明:不同退火温度均能制备出尖晶石结构的ZnCo_2O_4。随着退火温度的升高,ZnCo_2O_4纳米花趋于团聚。400℃退火制备的ZnCo_2O_4纳米花具有较好的电化学性能。在200 m A·g~(-1)的电流密度,经过50圈循环后,比容量仍高达673. 5 m A·h·g~(-1),对应的库伦效率为97. 5%,表现出了良好的循环性能和高充放电比容量。  相似文献   

5.
以商用Fe_2O_3纳米棒为前驱体,利用溶胶凝胶法一步完成了二氧化硅和间苯二酚-甲醛树脂壳层的包覆,在5%氢气气氛下,同时实现了三氧化二铁的还原和树脂的碳化,最终以NaOH溶液刻蚀掉二氧化硅,成功制备了中空碳纳米棒负载Fe_3O_4材料(Fe_3O_4@h-C)。结果表明,所制备的Fe_3O_4@h-C结构完整,Fe_3O_4的负载量较高,为62.6%,其比饱和磁化强度高达58.5 emu/g,易于回收再利用。该材料在H_2O_2氧化亚甲基蓝的实验中表现出良好的催化活性和重复使用性。通过对比实验可以证明,中空结构对催化性能的提升起到了重要作用。  相似文献   

6.
为提高动力电池的能量密度,以树叶模板法制备了具有多孔分级结构的Mn_2O_3材料.通过X射线电子衍射技术和扫描电子显微技术分别对材料的晶体结构和表面形貌进行了研究,结果表明制备的G-Mn_2O_3材料具有丰富的孔结构和较小的一次粒径.将制备材料作为锂离子电池和钠离子电池负极材料应用,并对材料的电化学性能进行了研究,与粉末Mn_2O_3材料相比,模板法制备的Mn_2O_3材料在锂离子电池中具有优异的电化学性能.  相似文献   

7.
以(NH_4)_6Mo_7O_(24)·4H_2O为钼源,以Sn_Cl_2·2H_2O为锡源,采用简单的溶剂热法经低温退火合成SnO_2-MoO_3前驱体;再进一步与硫氰化钾水热反应经低温煅烧即可得到Sn/MoS_2复合物.通过XRD,SEM等对合成材料的结构和形貌进行表征,采用恒流充、放电系统对合成材料的电化学性能进行了测试.结果表明:所合成的纯MoS_2纳米结构在作为锂离子电池负极材料时,具有较高的初始放电容量,但循环性能较差.所制得的Sn/MoS_2复合材料,大大改善了MoS_2的循环性能.当电流密度为100 m A·g~(-1)时,在0. 01 3. 0 V的电压窗口下循环70次后,Sn/MoS_2复合物的放电容量可以保持在725 m Ah·g~(-1),具有较高的可逆比容量和优良的循环性能,为研究高比容量和循环性能稳定的新型锂离子电池负极材料提供了实践依据.  相似文献   

8.
硅是一种具有应用前景的负极材料。为了解决在电化学循环过程中由于硅电极体积变化较大、导电性比较差而造成负极材料比容量迅速衰减及其循环性能不稳定的问题,本研究利用溶胶-凝胶法,经过镁热反应制得具有三明治结构的负极材料石墨烯-硅-石墨烯;通过实验研究发现负极材料G-Si-1:1具有较好的电化学性能,在电流密度为0.1 A/g时首次放电比容量为1150 m A·h·g~(-1),循环100周时放电比容量为534.2 m A·h·g~(-1)。负极材料石墨烯纳米片负载硅纳米颗粒的合成路线较为简单,并且具有较高的放电比容量和较好的循环性能,在未来具有较好的应用前景。  相似文献   

9.
采用2步水热法制备出1种以NiCo_2O_4纳米线为核,MnO_2纳米颗粒为壳的三维结构MnO_2@NiCo_2O_4@Ni-foam复合材料。通过X射线衍射(XRD),扫描电子显微镜(SEM)对复合催化剂的结构和形貌进行表征;通过循环伏安法(CV),恒流充放电性能(GCD)和电化学阻抗谱(EIS)来进行表征复合材料的电化学性能;通过O_3催化降解装置对复合材料的催化性能进行研究。结果表明:MnO_2@NiCo_2O_4@Ni-foam复合材料在频率范围为0.1~10 000 Hz时阻抗较低;通过降解实验发现,MnO_2@NiCo_2O_4@Ni-foam对O_3的降解率高于50%,表现出良好的催化效果。这表明MnO_2@NiCo_2O_4@Ni-foam复合材料在降解O_3,净化空气方面有广阔的应用前景。  相似文献   

10.
首次合成了葡萄糖铁复合物GCFe,以GCFe为前驱体,采用原位煅烧法制备了纳米Fe_3O_4@C复合材料.利用TEM、IR、XRD、XPS、Raman光谱等技术,对该复合材料的结构进行了表征.作为锂离子电池负极,Fe_3O_4@C复合材料呈现出优异的倍率性能和循环稳定性,在电流密度为2 000 mAh·g~(-1)时,放电比容量为825.4 mAh·g~(-1),经过180次循环后,无明显的容量衰减.  相似文献   

11.
以Fe_3O_4为核,以α-Fe_2O_3为壳层,合成出一种核壳结构的Fe_3O_4/α-Fe_2O_3纳米复合材料.采用扫描电镜(SEM)、透射电镜(TEM)和X-射线衍射仪(XRD)等表征手段对核壳材料的形貌、组成及结构等进行了表征,并将其应用于亚甲基蓝溶液的降解.结果表明:核壳结构的Fe_3O_4/α-Fe_2O_3纳米粒子粒径约为50~80nm.当H_2O_2用量为0.23mol/L,Fe_3O_4/α-Fe_2O_3投加量为5g/L,pH值为2,亚甲基蓝溶液初始质量浓度为5.0mg/L,60min内亚甲基蓝的降解可达98.7%.Fe_3O_4/α-Fe_2O_3纳米粒子经过3次循环使用后,对亚甲基蓝仍具有较好的降解能力.  相似文献   

12.
通过水热法在Ti基底上制备氧化铁的前驱物FeOOH,将长有FeOOH的钛片与硫代硫酸钠放入石英坩埚内,以Ar气作为载气,利用硫代硫酸钠在高温分解得到气相硫单质参与化合反应,然后通过控制煅烧温度,制备氧化铁纳米棒阵列与黄铁矿的原位复合产物。利用X射线衍射仪、场发射扫描电子显微镜和拉曼光谱对复合产物的晶型、形貌、成分、物相等进行分析,以电化学工作站测试Fe_2O_3/FeS_2复合材料的线性扫描伏安曲线、光电流-时间曲线、交流阻抗谱曲线和莫特-肖特基曲线。结果表明,黄铁矿在Fe_2O_3纳米棒表面均匀生成,样品在500℃热处理下具有优异的光电化学性能,其光电流密度可以从0.32 mA/cm~2提高到3.68 mA/cm~2。  相似文献   

13.
采用催化石墨化法将废旧棉纤维直接制备成棉纤维基石墨化碳/Fe_3C复合材料,并将该材料组装成锂离子电池,进行电化学性能表征.结果表明:在煅烧温度为700℃、保温时间2 h、硝酸铁浓度为1 mol/L的条件下,可以制备出棉纤维基石墨化碳/Fe_3C复合材料.通过SEM、XRD、Raman对样品进行表征,该材料由微米级的棉短纤维基石墨化碳负载纳米Fe_3C构成.在电流密度为0.1 A·g~(-1)条件下,循环100次后,比容量保持在279 mAh·g~(-1),循环寿命稳定.在2 A·g~(-1)条件下进行充放电测试,容量可达134 mAh·g~(-1).与直接碳化的棉纤维基碳材料相比,棉纤维基石墨化碳/Fe_3C复合材料表现出更优越的电池比容量和倍率性能.该工作将废旧棉织物通过铁离子直接催化石墨化作用,成功地构造棉纤维基石墨化碳/Fe_3C复合材料.制备过程无水洗和酸洗后处理步骤,大大简化工艺流程,为纺织废弃资源转化为锂离子电池材料提供新思路.  相似文献   

14.
基于多孔有机聚合物及其衍生碳材料在锂离子电池负极材料领域的发展和研究现状,探究了一种孔径可控的多孔碳纳米球的合成方法 .首先,设计合成了6,13-双(双4-溴苯基亚甲基)并五苯化合物,并以此为单元制备了一系列具有规则形貌的新型多孔有机聚合物.通过将不同孔径尺寸的聚合物在不同温度下进行碳化,以此探究碳化温度对材料电化学性能的影响.根据得到的数据可知,多孔碳材料THF-800具有最好的循环稳定性和优异的倍率性能,由此证明THF-800在锂离子电池负极材料领域具有潜在应用价值.此外,对锂离子电池负极材料孔径尺寸进行了调控,可以促进有机材料在锂离子电池中的应用,最终拓展了多孔有机聚合物衍生碳材料在锂离子电池负极材料中的应用范围.  相似文献   

15.
为提升钠离子电池的储钠性能,采用溶胶-凝胶法合成了Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2层状金属氧化物正极材料,并探讨了柠檬酸含量对材料形貌、结构和电化学性能的影响.形貌和结构分析表明,所得电极材料的成分主要为多晶Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2,并伴有少量Ni O;随着柠檬酸含量的增加,Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2的颗粒尺寸减小但团聚现象更加明显.电化学测试结果表明,当柠檬酸与金属氧化物的物质的量比为0.3∶1时,所得Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2正极材料具有最优的电化学性能,其首圈放电比容量高达128.1 mA·h/g,经50次充放电循环后,仍能释放出91.6 mA·h/g的可逆比容量.此外,Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2正极材料还拥有良好的倍率特性,在1.0 C高倍率下,其放电比容量可达84.4 m A·h/g,在快速充放电钠离子电池应用方面展现出良好的前景.  相似文献   

16.
纳米结构过渡金属氧化物与石墨烯的复合材料,已被证明是高可逆比容量和优异循环稳定性的新型锂离子电池负极材料之一,其制备工艺尤为重要。以九水硝酸铁、氧化石墨为原料,采用PVP辅助水热法制备Fe_2O_3/石墨烯纳米复合材料,探讨水热反应温度、反应时间条件对Fe_2O_3结构的影响,利用XRD和TEM对样品结构及形貌进行表征。结果表明:水热反应的最佳条件是温度为160℃、时间为12 h,制备得到Fe_2O_3粒径大小约为34砌,结晶度高,且均匀地分散在石墨烯表面。  相似文献   

17.
采用多聚醇法制备出水溶性的超小粒径(USPIO)的Fe_3O_4颗粒,并用羧基聚乙二醇(HOOC-PEG-COOH)和氨基聚乙二醇(HOOC-PEG-NH2)对其进行表面修饰.实验优化了Fe_3O_4纳米颗粒的制备方法,用透射电镜(TEM)观测Fe_3O_4纳米颗粒的晶体粒径.测定磷酸盐缓冲溶液(PBS,p H=7.4)中的稳定分散性.测定Fe_3O_4纳米颗粒和Fe_3O_4@PEG颗粒的r2/r1值.采用MTT法检测纳米颗粒在体外条件下对人肺癌H1299细胞生长的抑制作用,确定其细胞毒性的大小.实验结果显示:Fe_3O_4纳米颗粒,在生理条件下分散稳定且粒径小于5 nm,对H1299细胞的生长没有明显的影响.其粒径、形貌、分散稳定性和弛豫性能符合显影剂要求.  相似文献   

18.
以海藻酸钠(SA)为生物质模板和碳源,引入Mn~(2+),Co~(2+)并与藻酸盐中的嵌段配位而被固定,形成"蛋盒"结构。通过在N_2中高温退火,被海藻酸钠固定的Mn~(2+),Co~(2+)转化成被三维碳气凝胶(CA)骨架包裹连接的MnCo_2O_4纳米球,同时在柯肯达尔效应的作用下MnCo_2O_4纳米球形成中空结构,制备出了含有纳米MnCo_2O_4空心球结构的碳气凝胶(MnCo_2O_4@CA)电极材料。通过X射线衍射分析(XRD)确定其成分,使用场发射扫描电子显微镜(FESEM)、超高分辨场发射透射电子显微镜(HRTEM)表征其形貌结构,通过氮吸附方法对其比表面积与孔隙度进行了测试,使用电化学工作站进行循环伏安(CV)、恒电流充放电(GCD)和交流阻抗(EIS)测试分析其作为超级电容器电极材料的电化学性能。测试表明:MnCo_2O_4@CA的比表面积达117. 4 m~2·g~(-1);在电流密度为1 A·g~(-1)下比电容可达1 166. 7 F·g~(-1);由于其结构特殊,循环稳定性表现出色,在10 A·g~(-1)电流密度下,3 000次充放电循环后仍能保持84. 4%的电容。  相似文献   

19.
以Fe(NO_3)3·9H_2O为铁源,乙二醇为溶剂和还原剂,采用溶剂热法制备了Fe_3O_4磁性纳米颗粒.利用XRD、FT-IR和TEM对其进行了物相和形貌的表征,以4-氯苯酚(4-CP)为目标污染物,评价了其活化H_2O_2的性能.结果表明:制备的Fe_3O_4纳米颗粒近似呈球形,平均粒径约15 nm,能够有效地活化H_2O_2产生·OH并高效降解4-CP.在25℃,Fe_3O_4用量0.3 g·L~(-1),H_2O_2浓度1.6 mmol·L~(-1),初始pH=5.7时,所建立Fe_3O_4-H_2O_2氧化体系能在15 min内完全降解去除0.4 mmol·L~(-1) 4-CP,较相同条件下超声辅助反相共沉淀法制备的Fe_3O_4效果更好.Fe_3O_4活化H_2O_2降解4-CP的机理主要是因为新的溶剂热法可导致Fe_3O_4磁性纳米颗粒表面的富羟基化和配位作用.  相似文献   

20.
以Li_2CO_3,锐钛矿纳米TiO_2为原料采用高温固相法合成了微米级Li_4Ti_5O_(12)负极材料,并将其与葡萄糖、Ag NO3复合,制备出了C+Ag表面修饰的C+Ag/Li_4Ti_5O_(12)复合材料。借助XRD、SEM、电化学工作站和充放电测试仪表征C+Ag/Li_4Ti_5O_(12)材料的物理性能和电化学性能。结果表明:C+Ag表面修饰的Li_4Ti_5O_(12)复合材料有效提升了Li_4Ti_5O_(12)的电化学性能。0.1 C首次放电比容量为165.8 m Ah/g,5 C放电比容量仍可达到80 m Ah/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号