首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Belardetti  E R Kandel  S A Siegelbaum 《Nature》1987,325(7000):153-156
Neurotransmitters modulate the activity of ion channels through a variety of second messengers, including cyclic AMP, cyclic GMP and the products of phosphatidylinositol breakdown. Little is known about how different transmitters acting through different second-messenger systems interact within a cell to regulate single ion channels. We here describe the reciprocal actions of serotonin and the molluscan neuropeptide, FMRFamide, on individual K+ channels in Aplysia sensory neurons. In these cells, serotonin causes prolonged all-or-none closure of a class of background conductance K+ channels (the S channels) through cAMP-dependent protein phosphorylation. Using single-channel recording, we have found that FMRFamide produces two actions on the S channels; it increases the probability of opening of the S channels via a cAMP-independent second-messenger system and it reverses the closures of S channels produced by serotonin or cAMP.  相似文献   

2.
R L Huganir  A H Delcour  P Greengard  G P Hess 《Nature》1986,321(6072):774-776
Recent studies have provided evidence for a role of protein phosphorylation in the regulation of the function of various potassium and calcium channels (for reviews, see refs 1, 2). As these ion channels have not yet been isolated and characterized, it has not been possible to determine whether phosphorylation of the ion channels themselves alters their properties or whether some indirect mechanism is involved. In contrast, the nicotinic acetylcholine receptor, a neurotransmitter-dependent ion channel, has been extensively characterized biochemically and has been shown to be directly phosphorylated. The phosphorylation of this receptor is catalysed by at least three different protein kinases (cyclic AMP-dependent protein kinase, protein kinase C and a tyrosine-specific protein kinase) on seven different phosphorylation sites. However, the functional significance of phosphorylation of the receptor has been unclear. We have now examined the functional effects of phosphorylation of the nicotinic acetylcholine receptor by cAMP-dependent protein kinase. We investigated the ion transport properties of the purified and reconstituted acetylcholine receptor before and after phosphorylation. We report here that phosphorylation of the nicotinic acetylcholine receptor on the gamma- and delta-subunits by cAMP-dependent protein kinase increases the rate of the rapid desensitization of the receptor, a process by which the receptor is inactivated in the presence of acetylcholine (ACh). These results provide the first direct evidence that phosphorylation of an ion channel protein modulates its function and suggest that phosphorylation of postsynaptic receptors in general may play an important role in synaptic plasticity.  相似文献   

3.
H Kume  A Takai  H Tokuno  T Tomita 《Nature》1989,341(6238):152-154
Isoprenaline is a beta-adrenergic agonist of clinical importance as a remedy for asthma. In airway smooth muscle its relaxant action is accompanied by hyperpolarization of the membrane and elevation of the level of intracellular cyclic AMP. Hyperpolarization and relaxation are also induced by drugs such as forskolin, theophylline and dibutyryl cAMP, indicating that cAMP-dependent phosphorylation is involved in producing the electrical response. Cyclic AMP-dependent protein kinase (protein kinase A) has been reported to activate Ca2+-dependent K+ channels in cultured aortic smooth muscle cells and snail neurons. The membrane of tracheal smooth-muscle cells is characterized by a dense distribution of Ca2+-dependent K+-channels. We have now examined the effect of isoprenaline and protein kinase A on Ca2+-dependent K+-channels in isolated smooth muscle cells of rabbit trachea, using the patch-clamp technique. Our results show that the open-state probability of Ca2+-dependent K+-channel of tracheal myocytes is reversibly increased by either extracellular application of isoprenaline or intracellar application of protein kinase A. We also show that this effect is significantly enhanced and prolonged in the presence of a potent protein phosphatase inhibitor, okadaic acid.  相似文献   

4.
H C Hartzell  P F Méry  R Fischmeister  G Szabo 《Nature》1991,351(6327):573-576
The positive inotropic effect of the sympathetic nervous system on the heart is partly mediated by an increase in the voltage-gated Ca2+ current (ICa). This increase is generally attributed to beta-adrenergic receptor-stimulated cyclic AMP-dependent phosphorylation of the Ca2+ channel. It has been suggested that cAMP-dependent phosphorylation cannot explain all the effects of beta-adrenergic agonists on ICa and that a parallel membrane-delimited pathway involving the 'direct' action of the G protein Gs also stimulates ICa. A precedent exists for such a membrane-delimited pathway in the activation of a K+ channel by acetylcholine in heart. A membrane-delimited pathway for stimulation of ICa might be important in rapid beat-to-beat regulation of contraction by the sympathetic nervous system, because isoproterenol may produce a biphasic increase in ICa with the rapid phase (tau = 150 ms) putatively mediated by the direct pathway and the slow phase (tau = 35 s) by cAMP-dependent phosphorylation. Here we report that in frog, rat, and guinea pig ventricular myocytes ICa increases slowly and monophasically in response to isoproterenol. The increase is completely blocked by inhibitors of cAMP-dependent phosphorylation. Furthermore, the time course of the increase in ICa closely parallels the increase in contractile force produced by sympathetic nerve stimulation. These data refute earlier suggestions that regulation of Ca2+ channels by the sympathetic nervous system involves or requires a direct G-protein pathway.  相似文献   

5.
C R Artalejo  S Rossie  R L Perlman  A P Fox 《Nature》1992,358(6381):63-66
Bovine chromaffin cells have two components of whole-cell Ca2+ current: 'standard' Ca2+ currents that are activated by brief depolarizations, and 'facilitation' Ca2+ currents, which are normally quiescent but can be activated by large pre-depolarizations or by repetitive depolarizations to physiological potentials. The activation of protein kinase A can also stimulate Ca2+ current facilitation, indicating that phosphorylation can play a part in facilitation. Here we investigate the role of protein phosphorylation in the recruitment of facilitation Ca2+ currents by pre-pulses or repetitive depolarizations. We find that recruitment of facilitation by depolarization is a rapid first-order process which is suppressed by inhibitors of protein phosphorylation or by injection of phosphatase 2A into cells. Recruitment of facilitation Ca2+ current by voltage is normally reversible but phosphatase inhibitors render it irreversible. Our results indicate that recruitment of these Ca2+ currents by pre-pulses or repetitive depolarizations involves voltage-dependent phosphorylation of the facilitation Ca2+ channel or a closely associated regulatory protein. Voltage-dependent phosphorylation may therefore be a mechanism by which membrane potential can modulate ion channel activity.  相似文献   

6.
A B Cachelin  J E de Peyer  S Kokubun  H Reuter 《Nature》1983,304(5925):462-464
Modulation of ion channels is of increasing interest as it is an important step in the regulation of cellular functions. We have analysed the effect of 8-bromocyclic AMP on Ca2+ channels in cultured cardiac cells by the patch-clamp method and report here that there was a large increase in the probability of opening of the channels. On the basis of a recently proposed kinetic reaction scheme we suggest that cyclic AMP-dependent phosphorylation of Ca2+ channels primarily promotes the forward rate constants which lead to the open state of a Ca2+ channel during depolarization.  相似文献   

7.
R E White  A Schonbrunn  D L Armstrong 《Nature》1991,351(6327):570-573
The neuropeptide somatostatin inhibits secretion from electrically excitable cells in the pituitary, pancreas, gut and brain. In mammalian pituitary tumour cells somatostatin inhibits secretion through two distinct pertussis toxin-sensitive mechanisms. One involves inhibition of adenylyl cyclase, the other an unidentified cyclic AMP-independent mechanism that reduces Ca2+ influx by increasing membrane conductance to potassium. Here we demonstrate that the predominant electrophysiological effect of somatostatin on metabolically intact pituitary tumour cells is a large, sustained increase in the activity of the large-conductance Ca(2+)- and voltage-activated K+ channels (BK). This action of somatostatin does not involve direct effects of Ca2+, cAMP or G proteins on the channels. Our results indicate instead that somatostatin stimulates BK channel activity through protein dephosphorylation.  相似文献   

8.
Neurotransmitter can modulate neuronal activity through a variety of second messengers that act on ion channels and other substrate proteins. The most commonly described effector mechanism for second messengers in neurons depends on protein phosphorylation mediated by one of three sets of kinases: the cyclic AMP-dependent protein kinases, the Ca2+-calmodulin-dependent protein kinases, and the Ca2+-phospholipid-dependent protein kinases. In addition, some neurotransmitters and second messengers can also inhibit protein phosphorylation by lowering cAMP levels (either by inhibiting adenylyl cyclase or activating phosphodiesterases). This raises the question: can neurotransmitters also modulate neuronal activity by decreasing protein phosphorylation that is independent of cAMP? Various biochemical experiments show that a decrease in protein phosphorylation can arise through activation of a phosphatase or inhibition of kinases. In none of these cases, however, is the physiological role for the decrease in protein phosphorylation known. Here we report that in Aplysia sensory neurons, the presynaptic inhibitory transmitter FMRFamide decreases the resting levels of protein phosphorylation without altering the level of cAMP. Furthermore, FMRFamide overrides the cAMP-mediated enhancement of transmitter release produced by 5-hydroxytryptamine (5-HT), and concomitantly reverses the cAMP-dependent increase in protein phosphorylation produced by 5-HT. These findings indicate that a receptor-mediated decrease in protein phosphorylation may play an important part in the modulation of neurotransmitter release.  相似文献   

9.
Selected actions of neurotransmitters and hormones on ion channels in nerve and muscle cells are now thought to be mediated by cyclic AMP-dependent protein phosphorylation. Although the cyclic AMP-dependent protein kinase (cAMP-PK) affects the cellular properties of several neurones, its mode of action at the single-channel level has not been characterized. In addition, little is known about the identity or subcellular localization of the phosphoproteins that control channel activity and, in particular, whether the critical substrate proteins are cytoplasmic or membrane-associated. In Aplysia sensory neurones, serotonin produces a slow modulatory synaptic potential mediated by cAMP-PK that contributes to presynaptic facilitation and behavioural sensitization. Previously, we have found that serotonin acts on cell-attached membrane patches to produce prolonged all-or-none closures of a specific class of K+ channels (S channels) whose gating is weakly dependent on voltage and independent of intracellular calcium. We demonstrate here that in cell-free membrane patches from Aplysia sensory neurones, the purified catalytic subunit of cAMP-PK produces all-or-none closures of the S channel, simulating most (but not all) aspects of the action of serotonin on cell-attached patches. This result suggests that protein kinase acts on the internal surface of the membrane to phosphorylate either the channel itself or a membrane-associated protein that regulates channel activity.  相似文献   

10.
P A Smith  P Rorsman  F M Ashcroft 《Nature》1989,342(6249):550-553
Glucose stimulates insulin secretion from the pancreatic beta-cell by increasing the cytosolic calcium concentration. It is believed that this increment results mainly from Ca2+ influx through dihydropyridine-sensitive calcium channels because insulin secretion is abolished by dihydropyridine antagonists and is potentiated by dihydropyridine agonists. Glucose may influence Ca2+ influx through these channels in two ways: either by regulating the beta-cell membrane potential or by biochemical modulation of the channel itself. The former mechanism is well established. Glucose metabolism, by closing ATP-sensitive K+ channels, depolarizes the beta-cell membrane and initiates Ca2+-dependent electrical activity, with higher glucose concentrations further increasing Ca2+ influx by raising the frequency of action potentials. We show here that glucose metabolism also increases calcium influx directly, by modulating the activity of dihydropyridine-sensitive Ca2+ channels.  相似文献   

11.
M Li  J D McCann  C M Liedtke  A C Nairn  P Greengard  M J Welsh 《Nature》1988,331(6154):358-360
Chloride (Cl-) secretion by the airway epithelium regulates, in part, the quantity and composition of the respiratory tract fluid, thereby facilitating mucociliary clearance. The rate of Cl- secretion is controlled by apical membrane Cl- channels. Apical Cl- channels are opened and Cl- secretion is stimulated by a variety of hormones and neurotransmitters that increase intracellular levels of cyclic AMP (cAMP). In cystic fibrosis (CF), a common lethal genetic disease of Caucasians, airway, sweat-gland duct, secretory-coil and possibly other epithelia are anion impermeable. This abnormality may explain several of the clinical manifestations of the disease. The Cl- impermeability in CF-airway epithelia has been localized to the apical cell membrane, where regulation of Cl- channels is abnormal: hormonal secretagogues stimulate cAMP accumulation appropriately but Cl- channels fail to open. Here we report that the purified catalytic subunit of cAMP-dependent protein kinase plus ATP opens Cl- channels in excised, cell-free patches of membrane from normal cells, but fails to open Cl- channels in CF cells. These results indicate that in normal cells, the cAMP-dependent protein kinase phosphorylates the Cl- channel or an associated regulatory protein, causing the channel to open. The failure of CF Cl- channels to open suggests a defect either in the channel or in such an associated regulatory protein.  相似文献   

12.
Glucose-stimulated insulin secretion is associated with the appearance of electrical activity in the pancreatic beta-cell. At intermediate glucose concentrations, beta-cell electrical activity follows a characteristic pattern of slow oscillations in membrane potential on which bursts of action potentials are superimposed. The electrophysiological background of the bursting pattern remains unestablished. Activation of Ca(2+)-activated large-conductance K+ channels (KCa channel) has been implicated in this process but seems unlikely in view of recent evidence demonstrating that the beta-cell electrical activity is unaffected by the specific KCa channel blocker charybdotoxin. Another hypothesis postulates that the bursting arises as a consequence of two components of Ca(2+)-current inactivation. Here we show that activation of a novel Ca(2+)-dependent K+ current in glucose-stimulated beta-cells produces a transient membrane repolarization. This interrupts action potential firing so that action potentials appear in bursts. Spontaneous activity of this current was seen only rarely but could be induced by addition of compounds functionally related to hormones and neurotransmitters present in the intact pancreatic islet. K+ currents of the same type could be evoked by intracellular application of GTP, the effect of which was mediated by mobilization of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores. These observations suggest that oscillatory glucose-stimulated electrical activity, which is correlated with pulsatile release of insulin, results from the interaction between the beta-cell and intraislet hormones and neurotransmitters. Our data also provide evidence for a close interplay between ion channels in the plasma membrane and InsP3-induced mobilization of intracellular Ca2+ in an excitable cell.  相似文献   

13.
Ruta V  Jiang Y  Lee A  Chen J  MacKinnon R 《Nature》2003,422(6928):180-185
All living organisms use ion channels to regulate the transport of ions across cellular membranes. Certain ion channels are classed as voltage-dependent because they have a voltage-sensing structure that induces their pores to open in response to changes in the cell membrane voltage. Until recently, the voltage-dependent K+, Ca2+ and Na+ channels were regarded as a unique development of eukaryotic cells, adapted to accomplish specialized electrical signalling, as exemplified in neurons. Here we present the functional characterization of a voltage-dependent K+ (K(V)) channel from a hyperthermophilic archaebacterium from an oceanic thermal vent. This channel possesses all the functional attributes of classical neuronal K(V) channels. The conservation of function reflects structural conservation in the voltage sensor as revealed by specific, high-affinity interactions with tarantula venom toxins, which evolved to inhibit eukaryotic K(V) channels.  相似文献   

14.
DeMaria CD  Soong TW  Alseikhan BA  Alvania RS  Yue DT 《Nature》2001,411(6836):484-489
Acute modulation of P/Q-type (alpha1A) calcium channels by neuronal activity-dependent changes in intracellular Ca2+ concentration may contribute to short-term synaptic plasticity, potentially enriching the neurocomputational capabilities of the brain. An unconventional mechanism for such channel modulation has been proposed in which calmodulin (CaM) may exert two opposing effects on individual channels, initially promoting ('facilitation') and then inhibiting ('inactivation') channel opening. Here we report that such dual regulation arises from surprising Ca2+-transduction capabilities of CaM. First, although facilitation and inactivation are two competing processes, both require Ca2+-CaM binding to a single 'IQ-like' domain on the carboxy tail of alpha1A; a previously identified 'CBD' CaM-binding site has no detectable role. Second, expression of a CaM mutant with impairment of all four of its Ca2+-binding sites (CaM1234) eliminates both forms of modulation. This result confirms that CaM is the Ca2+ sensor for channel regulation, and indicates that CaM may associate with the channel even before local Ca2+ concentration rises. Finally, the bifunctional capability of CaM arises from bifurcation of Ca2+ signalling by the lobes of CaM: Ca2+ binding to the amino-terminal lobe selectively initiates channel inactivation, whereas Ca2+ sensing by the carboxy-terminal lobe induces facilitation. Such lobe-specific detection provides a compact means to decode local Ca2+ signals in two ways, and to separately initiate distinct actions on a single molecular complex.  相似文献   

15.
Voltage-sensing residues in the S4 region of a mammalian K+ channel   总被引:13,自引:0,他引:13  
E R Liman  P Hess  F Weaver  G Koren 《Nature》1991,353(6346):752-756
The ability of ion-channel proteins to respond to a change of the transmembrane voltage is one of the basic mechanisms underlying electrical excitability of nerve and muscle membranes. The voltage sensor has been postulated to be the fourth putative transmembrane segment (S4) of voltage-activated Na+, Ca2+ and K+ channels. Mutations of positively charged residues within S4 alter gating of Na and Shaker-type K+ channels, but quantitative correlations between the charge or a residue in S4 and the gating valence of the channel have not yet been established. Here, with improved resolution of the voltage dependence of steady-state activation, we present estimates of the equivalent gating valence with sufficient precision to allow quantitative examination of the contribution of individual charged residues to the gating valence of a mammalian non-inactivating K+ channel. We conclude that at least part of the gating charge associated with channel activation is indeed contributed by charged residues within the S4 segment.  相似文献   

16.
Y Maruyama  O H Petersen  P Flanagan  G T Pearson 《Nature》1983,305(5931):228-232
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion.  相似文献   

17.
The guanine nucleotide-binding protein, Gi, which inhibits adenylyl cyclase, has recently been shown to have three subtypes of the alpha-subunit, termed Gi alpha-1, Gi alpha-2 and Gi alpha-3. They share 87-94% amino-acid sequence homology and so are difficult to separate from one another. Among other functions, purified preparations activate K+ channels but there is confusion over which of the subtypes activates the muscarinic K+ channels of the atrial muscle of the heart: Gi alpha-3, also termed Gk, has been shown to activate this channel but it is not clear whether Gi alpha-1 does or does not. To clarify this problem, we expressed the subtypes separately in Escherichia coli to eliminate contamination by other subtypes and tested the recombinant alpha- chains on atrial muscarinic K+ channels. Although we anticipated that only Gi alpha-3 would have Gk activity, to our surprise all three recombinant subtypes were active, from which we deduce that the Gi subtypes are multifunctional.  相似文献   

18.
Effects of protein kinase C activators on cardiac Ca2+ channels   总被引:4,自引:0,他引:4  
A E Lacerda  D Rampe  A M Brown 《Nature》1988,335(6187):249-251
Phorbol esters have marked effects on voltage-dependent Ca2+ channels. Inhibitory and stimulatory effects on cardiac Ca2+ channels have been attributed in both cases to activation of protein kinase C. We show that the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate stimulates dihydropyridine-sensitive 45Ca2+ influx in primary cultures of neonatal rat ventricular myocytes within 5 s, but that after a 20-min pre-incubation period the phorbol ester markedly inhibits 45Ca2+ influx. The sequence of stimulation followed by inhibition is confirmed in cell-attached patch clamp recordings of single Ca2+ channel currents. The stimulatory effect is faster at 0 mV than at -40 mV, leading to the novel conclusion that the rate of protein kinase C activation is modulated by the state of the Ca2+ channel.  相似文献   

19.
Single Na+ channel currents observed in cultured rat muscle cells   总被引:28,自引:0,他引:28  
F J Sigworth  E Neher 《Nature》1980,287(5781):447-449
The voltage- and time-dependent conductance of membrane Na+ channels is responsible for the propagation of action potentials in nerve and muscle cells. In voltage-step-clamp experiments on neurone preparations containing 10(4)-10(7) Na+ channels the membrane conductance shows smooth variations in time, but analysis of fluctuations and other eivdence suggest that the underlying single-channel conductance changes are stochastic, rapid transitions between 'closed' and 'open' states as seen in other channel types. We report here the first observations of currents through individual Na+ channels under physiological conditions using an improved version of the extracellular patch-clamp technique on cultured rat muscle cells. Our observations support earlier inferences about channel gating and show a single-channel conductance of approximately 18 pS.  相似文献   

20.
ATP-sensitive K+ channel in the mitochondrial inner membrane.   总被引:45,自引:0,他引:45  
I Inoue  H Nagase  K Kishi  T Higuti 《Nature》1991,352(6332):244-247
Mitochondria take up and extrude various inorganic and organic ions, as well as larger substances such as proteins. The technique of patch clamping should provide real-time information on such transport and on energy transduction in oxidative phosphorylation. It has been applied to detect microscopic currents from mitochondrial membranes and conductances of ion channels in the 5-1,000 pS range in the outer and inner membranes. These pores are not, however, selective for particular ions. Here we use fused giant mitoplasts prepared from rat liver mitochondria to identify a small conductance channel highly selective for K+ in the inner mitochondrial membrane. This channel can be reversibly inactivated by ATP applied to the matrix side under inside-out patch configuration; it is also inhibited by 4-aminopyridine and by glybenclamide. The slope conductance of the unitary currents measured at negative membrane potentials was 9.7 +/- 1.0 pS (mean +/- s.d., n = 6) when the pipette solution contained 100 mM K+ and the bathing solution 33.3 mM K+. Our results indicate that mitochondria depolarize by generating a K+ conductance when ATP in the matrix is deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号