首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Molecular basis of autosomal-dominant polycystic kidney disease   总被引:5,自引:0,他引:5  
Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common monogenetic diseases in humans. The discovery that mutations in the PKD1 and PKD2 genes are responsible for ADPKD has sparked extensive research efforts into the physiological and pathogenetic role of polycystin-1 and polycystin-2, the proteins encoded by these two genes. While polycystin-1 may mediate the contact among cells or between cells and the extracellular matrix, a lot of evidence suggests that polycystin-2 represents an endoplasmic reticulum-bound cation channel. Cyst development has been compared to the growth of benign tumors and this view is highlighted by the model that a somatic mutation in addition to the germline mutation is responsible for cystogenesis (two-hit model of cyst formation). Since in vitro polycystin-1 and polycystin-2 interact through their COOH termini, the two proteins possibly act in a common pathway, which controls the width of renal tubules. The loss of one protein may lead to a disruption of this pathway and to the uncontrolled expansion of tubules. Our increasing knowledge of the molecular events in ADPKD has also started to be useful in designing novel diagnostic and therapeutic strategies. Received 12 September 2001; received after revision 7 November 2001; accepted 7 November 2001  相似文献   

2.
The modular nature of apoptotic signaling proteins   总被引:9,自引:0,他引:9  
Apoptosis, initiated by a variety of stimuli, is a physiological process that engages a well-ordered signaling cascade, eventually leading to the controlled death of the cell. The most extensively studied apoptotic stimulus is the binding of death receptors related to CD95 (Fas/Apo1) by their respective ligands. During the last years, a considerable number of proteins have been identified which act together in the receptor-proximal part of the signaling pathway. Based on localized regions of sequence similarity, it has been predicted that these proteins consist of several independently folding domains. In several cases these predictions have been confirmed by structural studies; in other cases they are at least supported by experimental data. This review focuses on the three most widespread domain families found in the apoptotic signaling proteins: the death domain, the death effector domain and the caspase recruitment domain. The recently discovered analogies between these domains, both in structure and in function, have shed some light on the overall architecture of the pathway leading from death receptor ligation to the activation of caspases and eventually to the apoptotic phenotype. Received 8 October 1998; received after revision 8 January 1999; accepted 8 January 1999  相似文献   

3.
Two new enzymes which hydrolyse D-alanyl-p-nitroanilide have been detected in Ochrobactrum anthropi LMG7991 extracts. The first enzyme, DmpB, was purified to homogeneity and found to be homologous to the Dap protein produced by O. anthropi SCRC C1-38 (ATCC49237). The second enzyme, DmpA, exhibits a similar substrate profile when tested on p-nitroanilide derivatives of glycine and L/D-alanine, but the amounts produced by the Ochrobactrum strain were not sufficient to allow complete purification. Interestingly, the DmpA preparation also exhibited an L-aminopeptidase activity on the tripeptide L-Ala-Gly-Gly but it was not possible to be certain that the same protein was responsible for both p-nitroanilide and peptide hydrolysing activities. The gene encoding the DmpA protein was cloned and sequenced. The deduced protein sequence exhibits varying degrees of similarity with those corresponding to several open reading frames found in the genomes of other prokaryotic organisms, including Mycobacteria. None of these gene products has been isolated or characterised, but a tentative relationship can be proposed with the NylC amidase from Flavobacterium sp. K172. Received 7 December 1998; received after revision 15 March 1999; accepted 22 March 1999  相似文献   

4.
5.
Cellulase genes of Pseudotrichonympha grassii (Hypermastigida: Eucomonymphidae), the symbiotic flagellate in the hindgut of the wood-feeding termite Coptotermes formosanus, were isolated and characterized. The nucleotide sequences of the major cellulase component in the hindgut of C. formosanus were determined based on its N-terminal amino acid sequence. The five isolated nucleotide sequences (PgCBH-homos) had an open reading frame of 1350 bp showing similarity to catalytic domains of glycoside hydrolase family (GHF) 7 members, and primary structure comparison with GHF7 members whose tertiary structures are well-characterized revealed the overall similarity between PgCBH-homo and the catalytic domain of a processive cellulase Cel7A (formerly CBHI) from the aerobic fungus Trichoderma reesei. Functional expression of PgCBH-homos in Escherichia coli, using the carboxymethylcellulose-Congo red assay, demonstrated the actual cellulolytic activity of PgCBH-homo. RT-PCR showed that PgCBH-homos were expressed, from the three flagellates in the hindgut, specifically in P. grassii. Received 10 July 2002; accepted 26 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

6.
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.  相似文献   

7.
Visual pigment: G-protein-coupled receptor for light signals   总被引:5,自引:0,他引:5  
The visual pigment present in photoreceptor cells is a prototypical G-protein-coupled receptor (GPCR) that receives a light signal from the outer environment using a light-absorbing chromophore, 11-cis-retinal. Through cis-trans isomerization of the chromophore, light energy is transduced into chemical free energy, which is in turn utilized for conformational changes in the protein to activate the retinal G-protein. In combination with site-directed mutagenesis, various spectroscopic and biochemical studies identified functional residues responsible for chromophore binding, color regulation, intramolecular signal transduction and G-protein coupling. Extensive studies reveal that these residues are localized into specific domains of visual pigments, suggesting a highly manipulated molecular architecture in visual pigments. In addition to the recent findings on dysfunctional mutations in patients with retinitis pigmentosa or congenital night blindness, the mechanism of intramolecular signal transduction in visual pigments and their evolutionary relationship are discussed. Received 20 July 1998; received after revision 9 September 1998; accepted 23 September 1998  相似文献   

8.
DnaJ/Hsp40 (heat shock protein 40) proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, Hsp70s. Because the ATP hydrolysis is essential for the activity of Hsp70s, DnaJ/Hsp40 proteins actually determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. DnaJ/Hsp40 proteins all contain the J domain through which they bind to Hsp70s and can be categorized into three groups, depending on the presence of other domains. Six DnaJ homologs have been identified in Escherichia coli and 22 in Saccharomyces cerevisiae. Genome-wide analysis has revealed 41 DnaJ/Hsp40 family members (or putative members) in humans. While 34 contain the typical J domains, 7 bear partially conserved J-like domains, but are still suggested to function as DnaJ/ Hsp40 proteins. DnaJA2b, DnaJB1b, DnaJC2, DnaJC20, and DnaJC21 are named for the first time in this review; all other human DnaJ proteins were dubbed according to their gene names, e.g. DnaJA1 is the human protein named after its gene DNAJA1. This review highlights the progress in studying the domains in DnaJ/Hsp40 proteins, introduces the mechanisms by which they interact with Hsp70s, and stresses their functional diversity. Received 27 April 2006; received after revision 5 June 2006; accepted 19 July 2006  相似文献   

9.
The suppressors of cytokine signalling (SOCS)   总被引:10,自引:0,他引:10  
  相似文献   

10.
Functional analysis of the human MCL-1 gene   总被引:6,自引:0,他引:6  
  相似文献   

11.
Detection of HLA-E and -G DNA alleles for population and disease studies   总被引:4,自引:0,他引:4  
HLA-E and -G genes show a restricted polymorphism encoding for molecules whose variability is limited at the peptide binding site. Fourteen alleles that give rise to only three productive proteins for HLA-G (*0101, *0103 and *0104) and five alleles with three different proteins for HLA-E (*0101, *0102 and *0103) have been described. Expression of these molecules is low and found in many tissues for HLA-E; HLA-G protein is expressed in extravillous trophoblast cells and thymic epithelium. Molecular studies have shown how HLA-G and HLA-E bind to natural killer (NK) cells immunoglobulin and lectin-type inhibitory receptors. HLA-E may act as a sentinel of the cell; if classical class I and HLA-G are being expressed, HLA-E molecules may reach the cell surface and inhibit the lysis by NK cells. Most findings are consistent with the hypothesis that HLA-E and -G proteins may be tolerogenic molecules at either the T-cell receptor (TcR) (inflammation, graft rejection) or NK level, switching off cells which usually attack foreign (including foetus) or self (autoimmune) antigens. A low HLA-E and -G polymorphism is observed in humans, and their allele frequencies are mostly homogeneous in the populations tested so far. Many studies to detect these alleles are now being performed in isolated populations and also in pregnancy-associated pathologies. In the present paper, standard and detailed techniques to detect HLA-E and -G DNA polymorphism are reported and discussed. Received 14 July 1999; received after revision 25 August 1999; accepted 25 August 1999  相似文献   

12.
Horses, donkeys, and therefore, probably all equids, secrete a nonglycosylated, progesterone-dependent, 19-kDa protein (P19) into the uterine lumen during early pregnancy, and significant quantities of it are taken up by the developing conceptus. Sequence analysis and structural modelling have identified P19 as a lipocalin with greatest similarity to the murine major urinary protein lipocalins. However, lack of strong identity with any particular group of lipocalins and several unusual structural features, including a unique amino acid triplet within one of the invariant domains and an unusual external tryptophan residue, classify it as a new member of the lipocalin family. P19 is therefore likely to be a transport protein involved in supporting early embryonic development. Preliminary evidence using recombinant-derived P19 and fluorescently tagged ligands suggests that it may transport a fatty acid or retinol-like molecule. Although an initial search failed to identify homologues of P19 in other mammals, they may nevertheless exist but are synthesised and secreted in much smaller quantities, making them difficult to detect. Equids appear to need particularly large quantities of the protein during early pregnancy because of the unusually late implantation in this species and the presence of a capsule surrounding the conceptus until about day 23 of gestation.  相似文献   

13.
Signalling via the protein kinase Raf-MEK-ERK pathway is of major importance for transformation by oncogenes. To identify genes affected by inhibition of this pathway, c-JUN transformed rat fibroblasts were treated with a MEK1 inhibitor (PD98059) and subjected to two-dimensional gel electrophoresis after cell lysis. Gene products with expression influenced by MEK1 inhibition were determined by mass spectrometry of fragments from in-gel tryptic digestions. The expression of pirin, a nuclear factor I-interacting protein, was lowered after inhibition of MEK1. Western blot analysis revealed increased expression of pirin in RAS and c-JUN transformed cells in the absence of PD98059. Inhibition of MEK1 also led to reduced expression of α-enolase, phosphoglycerate kinase, elongation factor 2 and heterogeneous nuclear ribonucleoprotein A3, the latter two being detected as truncated proteins. In contrast, the level of ornithine aminotransferase was increased. We conclude that inhibition of MEK1 results in major alterations of protein expression in c-JUN transformed cells, suggesting that this pathway is important for oncogene-induced phenotypic changes. Received 30 December 1998; accepted 12 January 1999  相似文献   

14.
Functions of the MDM2 oncoprotein   总被引:34,自引:1,他引:33  
  相似文献   

15.
ATP-dependent potassium (KATP) channels occupy a key position in the control of insulin release from the pancreatic β cell since they couple cell polarity to metabolism. These channels close when more ATP is produced via glucose metabolism. They are also controlled by sulfonylureas, a class of drugs used in type 2 diabetic patients for triggering insulin secretion from β cells that have lost part of their sensitivity to glucose. We have demonstrated the existence of endogenous counterparts to sulfonylureas which we have called ‘endosulfines.’ In this review, we describe the discovery, isolation, cloning, and biological features of the high-molecular-mass form, α-endosulfine, and discuss its possible role in the physiology of the β cell as well as in pathology. Received 1 February 1999; received after revision 26 March 1999; accepted 26 March 1999  相似文献   

16.
The FANCJ family of DNA helicases is emerging as an important group of proteins for the prevention of human disease, cancer, and chromosomal instability. FANCJ was identified by its association with breast cancer, and is implicated in Fanconi Anemia. Proteins with sequence similarity to FANCJ are important for maintenance of genomic stability. Mutations in genes encoding proteins related to FANCJ, designated ChlR1 in human and Chl1p in yeast, result in sister chromatid cohesion defects. Nematodes mutated in dog-1 show germline as well as somatic deletions in genes containing guanine-rich DNA. Rtel knockout mice are embryonic lethal, and embryonic stem cells show telomere loss and chromosomal instability. FANCJ also shares sequence similarity with human XPD and yeast RAD3 helicases required for nucleotide excision repair. The recently solved structure of XPD has provided new insight to the helicase core and accessory domains of sequence related Superfamily 2 helicases. The functions and roles of members of the FANCJ-like helicase family will be discussed. Received 17 September 2008; received after revision 24 October 2008; accepted 28 October 2008  相似文献   

17.
Dexamethasone enhances CTLA-4 expression during T cell activation   总被引:4,自引:0,他引:4  
T cell activation is enhanced by the costimulatory interaction of B7 on antigen-presenting cells and CD28 on T cells, resulting in long-term T cell proliferation, differentiation and production of large amounts of cytokines, such as interleukin (IL)-2. CTLA-4 is a co-stimulation receptor that shares 31% homology with CD28 and binds B7 family members with higher affinity. CTLA-4 is transiently expressed intracellularly and on the cell surface following activation of T cells. We have studied the kinetics of CTLA-4 expression and the effects of dexamethasone on CTLA-4 expression during T cell activation in cultures of mouse spleen cells stimulated by a mixture of immobilized anti-CD3 and anti-CD28 monoclonal antibodies (anti-CD3/CD28 mAb) or concanavalin A (ConA). CTLA-4 expression peaked on day 2 and returned to background levels after 7 days. Dexamethasone was found to potentiate CTLA-4 expression in a dose-dependent manner with an EC50 effective concentration 50%) of about 10−8 M. In contrast, other immunosuppressive agents, such as rapamycin or cyclosporin A had no or an inhibitory effect on CTLA-4 expression, respectively. Dexamethasone also stimulated CD28 expression, but inhibited IL-2R expression during anti-CD3/CD28 mAb-induced mouse splenic T cell activation. Western blot analyses of lysates of activated mouse T cells showed that dexamethasone increased CTLA-4 protein levels twofold during anti-CD3/CD28 mAb-induced activation. Dexamethasone also enhanced CTLA-4 messenger RNA twofold as quantified by ribonuclease protection assay. The effects of dexamethasone on CTLA-4 expression were glucocorticoid-specific and completely inhibited by the glucocorticoid receptor antagonist mifepristone (RU486), indicating that the effect of dexamethasone on CTLA-4 expression is mediated through the glucocorticoid receptor. In conclusion, the immunosuppressive agent dexamethasone actually stimulates CTLA-4 expression, which is involved in downregulation of T cell activation. Received 19 May 1999; received after revision 13 July 1999; accepted 13 July 1999  相似文献   

18.
Comparative genome analyses reveal that most functional domains of human genes have homologs in widely divergent species. These shared functional domains, however, are differentially shuffled among evolutionary lineages to produce an increasing number of domain architectures. Combined with duplication and adaptive evolution, domain shuffling is responsible for the great phenotypic complexity of higher eukaryotes. Although the domain-shuffling hypothesis is generally accepted, determining the molecular mechanisms that lead to domain shuffling and novel gene creation has been challenging, as sequence features accompanying the formation of known genes have been obscured by accumulated mutations. The growing availability of genome sequences and EST databases allows us to study the characteristics of newly emerged genes. Here we review recent genome-wide DNA and EST analyses, and discuss the three major molecular mechanisms of gene formation: (1) atypical spicing, both within and between genes, followed by adaptation, (2) tandem and interspersed segmental duplications, and (3) retrotransposition events. Received 18 October 2006; received after revision 18 November 2006; accepted 28 November 2006  相似文献   

19.
Using a set of 372 proteins representative of a variety of 56 distinct globular folds, a statistical correlation was observed between two recently revealed features of protein structures: tightened end fragments or 'closed loops', i. e. sequence fragments that are able in three-dimensional (3D) space to nearly close their ends (a current parameter of polymer physics), and 'topohydrophobic positions', i. e. positions always occupied in 3D space by strong hydrophobic amino acids for all members of a fold family. Indeed, in sequence space, the distribution of preferred lengths for tightened end fragments and that for topohydrophobic separation match. In addition to this statistically significant similarity, the extremities of these 'closed loops' may be preferentially occupied by topohydrophobic positions, as observed on a random sample of various folds. This observation may be of special interest for sequence comparison of distantly related proteins. It is also important for the ab initio prediction of protein folds, considering the remarkable topological properties of topohydrophobic positions and their paramount importance within folding nuclei. Consequently, topohydrophobic positions locking the 'closed loops' belong to the deep cores of protein domains and might have a key role in the folding process. Received 1 February 2001; accepted 7 February 2001  相似文献   

20.
Lecticans: organizers of the brain extracellular matrix   总被引:19,自引:0,他引:19  
Lecticans are a family of chondroitin sulfate proteoglycans, encompassing aggrecan, versican, neurocan and brevican. These proteoglycans are characterized by the presence of ahyaluronan-binding domain and a C-type lectin domain in their core proteins. Through these domains, lecticans interact with carbohydrate and protein ligands in the extracellular matrix and act as linkers of these extracellular matrix molecules. In adult brain, lecticans are thought to interact with hyaluronan and tenascin-R to form a ternary complex. We propose that the hyaluronan-lectican-tenascin-R complex constitutes the core assembly of the adult brain extracellular matrix, which is found mainly in pericellular spaces of neurons as ‘perineuronal nets’. Received 27 September 1999; accepted 26 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号