首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 468 毫秒
1.
机器人柔顺控制可以响应环境变化,但接触信息的延迟以及未知机器人系统的跟踪误差等问题均导致接触瞬间力矩超调严重。针对上述问题本文提出一种基于自适应位置控制的改进阻抗控制策略,实现快速、精确的位置跟踪,同时,提高力控制的响应速度和精度。本策略采用双环控制,外环在传统阻抗模型基础上引入非线性接触力微分项在保持系统稳定性的同时提高机器人对接触力变化的响应,有效降低接触力超调;内环为自适应滑模控制,并使用RBF神经网络逼近机器人动力学模型并补偿系统中不确定性扰动,提高了系统的鲁棒性,提高收敛速度并降低跟随误差。通过仿真与实验,验证了所提出的改进阻抗控制方法相比于传统的阻抗控制方法有更好的力控响应速度和位置跟踪精度,可有效解决机器人与环境接触瞬间的接触力超调问题。  相似文献   

2.
提出了一种基于动力学模型的导纳控制算法,用来实现机器人末端力和位置的柔顺控制,可以在速度模式下控制机器人运动,以保证无外力接触时的轨迹跟踪精度.首先,根据牛顿-欧拉法建立机器人动力学模型;然后,通过粒子群算法辨识动力学模型参数,得到完整的动力学模型;在此基础上,计算机器人末端位置误差和外力,利用设计的导纳控制器实现机器人的柔顺控制,用Matlab的Simulink仿真模块验证了基于动力学模型导纳控制的有效性和可靠性.仿真结果表明:机器人末端没有与环境接触时,具有较高的跟踪精度;与环境接触时,机器人末端会产生位置误差和外力,从而实现机器人的柔顺控制.  相似文献   

3.
针对3-PPSR并联机器人加入大长径比柔性铰链和与外界环境接触产生形变的问题,在控制端提出了基于位置阻抗控制的主动柔顺控制策略。该方法在柔性并联机器人与外界环境对象的等效作用模型和基于位置的阻抗控制模型基础上,引入外界环境作用力和结合系统的力跟踪模型,通过调整初始参考位置控制模型的稳态误差实现基于位置的外力跟踪控制。采用Lyapunov稳定模型和能量方程,在未知环境变量条件下通过力偏差直接控制目标位置的自适应控制系统实现自适应的力控制。实验结果表明,基于位置的外力控制精度可以达到±0.05N,应用自适应控制精度可以达到±0.1N,3-PPSR柔性并联机器人的末端的接触力控制精度得到了提高,满足设计要求,验证了该控制方法的准确性和有效性。  相似文献   

4.
基于视觉的机器人模糊自适应阻抗控制   总被引:3,自引:0,他引:3  
对未知环境下具有6个自由度工业机器人的视觉/力反馈混合控制进行研究.首先,建立被跟踪曲线图像特征与机器人关节角度的映射关系;其次,由机器人离散阻抗控制规律描述机器人末端在受限表面移动时与受限表面产生连续接触的条件,并根据接触力的变化对阻抗模型参数进行模糊调节;最后,在未知物体表面对末端固定安装单摄像机和力传感器的6个自由度机器人进行力跟踪试验研究.研究结果表明:该阻抗控制具有较强的未知物体表面曲线跟踪能力和较高的力控制精度,曲线跟踪算法简单,不要求对视觉传感器进行精确标定,模糊控制器实时地调整阻抗参数,使系统稳定而且具有良好的动态品质,是一种有效的视觉/力反馈混合控制方法.  相似文献   

5.
重载四足机器人的足部与地面接触过程和步态转换过程中会受到不确定的冲击载荷作用,易导致足部机构载荷过大从而造成结构的冲击损坏。因此,针对使用液压串联弹性执行器(series elastic actuators,SEA)作为足部末端在非结构环境下动态性能差的问题,提出了基于环境参数估计的滑模阻抗控制方法(environmental parameter estimation sliding mode,EPESM)。以阀控液压缸的活塞位移传递函数为基础建立了基于位置内环的SEA阻抗控制模型,并以PID作为基础控制器;为改善SEA阻抗控制的动态性能,根据Lyapunov第二法构建稳定的自适应环境参数估计方法对SEA期望位置进行前馈补偿;为提升自适应环境参数估计方法在SEA工作过程中不同阶段的动态性能和环境变化适应性,使用模糊控制方法对自适应环境参数估计方法中的自适应参数进行寻优;以SEA状态方程为基础构建滑模控制器与PID控制器进行动态性能对比分析。仿真结果表明:在变SEA弹簧刚度工况和变环境刚度下,EPESM阻抗控制的响应速度明显更快,可将调节时间从平均5 s缩短到1 s内,能更快地达到预期位移和预期接触力,且能略微降低稳态误差,使接触力误差保持在±6 N内。在动态跟踪工况下,EPESM阻抗控制的动态性能更好,在快速进入跟踪状态后,可以长时间保持0.2 s以内的相位滞后和5.2%的幅值误差。  相似文献   

6.
轮足式机器人在行进过程中不可避免要与环境发生交互,在环境信息(刚度与位置)未知与时变的情况下,传统的阻抗隔振力控制方法由于目标阻抗模型的参数固定,存在鲁棒性较差的问题.在阻抗控制的基础上,基于Lyapunov稳定性定理设计了自适应阻抗控制器.该方法通过一个位置补偿量来间接调整阻抗参数,使系统稳态误差为零,提高了控制方法对未知多变环境的适应性;针对机器人轮式运动通过不同减速带的隔振问题进行了实验,证实了自适应阻抗控制方法的优越性.   相似文献   

7.
针对模型未知和动力学非线性机器人轨迹跟踪,提出了一种基于分布式动态回归神经网络(DRNN)的自适应控制方法.该方法在PD动态反馈控制的基础上,引入神经网络辨识器(NNI)在线逼近对象的非线性动力学,并设计出神经网络自适应控制器(NNC)来补偿机器人动力学非线性造成的误差.仿真结果表明该控制方案具有良好的跟踪性能和较强的鲁棒性.  相似文献   

8.
为了减少机器人足端落地冲击力,提高机器人对复杂地形的适应能力,将基于位置的阻抗控制应用于电动轮足式机器人足式运动过程的柔顺性控制,提出具有分数阶结构形式的阻抗控制器以改善系统的接触性能.由于位置闭环的带宽会影响目标阻抗的实现,引入逆位置环补偿环节以提高系统的阻抗跟踪性能.仿真与实验结果表明,分数阶阻抗控制不仅能够实现足端与地面的稳定接触,而且相比于常规的二阶质量-阻尼-弹簧阻抗控制,能实现更好的接触过渡性能.   相似文献   

9.
针对液压驱动四足机器人在约束空间力控制特点,提出鲁棒位置内环阻抗外环的复合控制策略,推导电液伺服作动器的数学模型,建立作动器的误差模型,基于误差模型及其不确定界进行位置内环μ控制器设计,给出环境参数的自适应估计器.在半实物仿真平台上进行力跟踪实验,实验结果表明:位置内环幅值超调和相位滞后分别小于10%和0.02s,验证了鲁棒位置内环控制器的有效性;基于自适应估计方法获得的环境参数设计的轨迹发生器及阻抗力外环的综合运用实现了系统的高精度力跟踪控制,验证了所提控制策略的有效性.  相似文献   

10.
针对现有单一的线性伺服控制时机器人运动平台的跟踪轨迹精度较差的问题,基于前馈力矩补偿和滑模变结构控制相结合的控制策略,对具有线性位置解的3-CRU并联机器人的轨迹跟踪进行了相关研究.采用拉格朗日方程建立了该机器人的包含建模误差和外部干扰的动力学模型并辨识了机器人的动力学参数,设计了在线性伺服控制基础上前馈力矩补偿与滑模变结构控制相结合的控制策略.通过实验对比,证明采用上述控制策略不仅提高了机器人动平台的轨迹跟踪精度,而且增强了机器人系统的鲁棒性.同时,线性的位置正解方程这一特性使得机器人驱动滑块的位置误差传递到运动平台上不会呈指数型累积增长,从结构上保证了机器人运动平台的轨迹精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号