首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
HTR-10平衡态运行方式研究   总被引:1,自引:0,他引:1  
为了使10MW高温气冷实验堆(HTR-10)运行在安全、经济的状态下,研究了5次通过、8次通过和10次通过三种运行方式下平衡态HTR-10堆芯的特性,利用高温气冷堆物理设计程序 VSOP对所选方案进行分析计算。结论表明:在最大燃耗不超过101 GWd/t的条件下,增大燃料球通过堆芯的次数并缩短每次通过堆芯所需的时间,将会使乏燃料平均燃耗提高,使HTR-10的燃料得到更有效的利用。  相似文献   

2.
介绍了HTR-10高温气冷实验堆位于反射层中的控制棒和作为第二停堆系统的硼球孔道的反应性当量计算方法。用WIMS(积分输运碰撞几率法)程序、GAM、THERMOS程序方法产生控制棒区的截面。用一维离散坐标法程序ONESN1产生泄漏谱,在控制棒区的B4C从10群截面归并为4群截面;用二维离散坐标法程序SN2DB,在控制棒区(包括B4C、空隙和部分石墨反射层)考虑空间效应做均匀化4群截面。有控制棒和无控制棒情况下的Keff本征值,是由三维扩散有限差分程序CITATION在(θ,r,z)坐标系条件下做出的,并给出控制棒的反应性当量。  相似文献   

3.
清华大学核能技术设计研究院目前正在设计建造我国第一座高温气冷实验堆(HTR-10),功率为10MW。HTR-10的设计,体现了模块式高温气冷堆的先进特征,其中最主要的是固有安全特性。HTR-10的安全审评也是一个新的课题。本文阐述了HTR-10建造许可证审评中所遵循的依据和原则以及审评的主要过程和活动,讨论了审评过程中的主要安全问题,包括燃料元件、源项计算、事故分析、安全分级、包容体设计等。  相似文献   

4.
HTR-10各运行阶段控制棒反应性当量计算   总被引:4,自引:0,他引:4  
介绍了10 MW高温气冷反应堆(HTR-10)位于反射层中的控制棒反应性当量的计算方法.用GAM和THERMOS程序分别产生堆芯、反射层、含硼碳砖及控制棒组成材料的超热群和热群截面.用二维离散纵标法程序SN2D在(r,θ)坐标系下作详细控制棒结构的模型计算,该模型包括堆芯、反射层及反射层外的含硼碳砖,控制棒位于反射层中.含硼碳砖的外表面为自由边界,以考虑反射层中的中子泄漏谱.按通量权重归并控制棒区(包括控制棒、空隙及石墨反射层的整个圆环)的均匀化截面.全堆有控制棒和无控制棒情况下的Keff本征值,是由有限差分程序CITATION在(r,z)坐标系下计算出的,并由此得到控制棒的反应性当量.文中给出了HTR-10各运行阶段(包括初装堆、过渡过程中期和后期、平衡换料等时期)的控制棒的反应性当量.初装堆控制棒的反应性积分与微分当量也在文中给出.  相似文献   

5.
10MW 高温气冷堆燃料循环系统热实验装置   总被引:2,自引:0,他引:2  
为在反应堆的实际运行温度和氦气氛下考验10MW高温气冷堆(HTR-10)燃料循环系统主要设备,进一步取得设计和运行经验,建造了该全尺寸热实验装置。装置中主要设备均按原型设备设计和制造,工作介质为氦气,运行温度为150~180℃,实验球为直径60mm石墨球。采用可编程控制器PLC控制和镶嵌块式模拟屏显示。装置采用重力和气动方法输送球,特别是在球床堆上首次应用了脉冲气流破桥助流方法从卸料管中单列排出球的设备。所有研究成果已在HTR-10的施工设计中得到应用。  相似文献   

6.
HTR-10 氦气阀门设计要求   总被引:1,自引:0,他引:1  
核电站运行时,阀门是最易发生事故的设备之一。为了确保核电站的安全,必须选用安全可靠的阀门。10MW高温气冷实验堆(HTR-10)中的氦气阀门有十多个品种、300多台,主要为截止阀、调节阀、止回阀、安全阀等。这些阀门是高温气冷堆中面广量大的承压设备,它们连接着高温气冷堆中众多的系统,对于保证高温堆的正常稳定运行及安全停堆起着重要的作用。该文介绍了HTR-10氦气阀门的概况,氦气阀门的要求、核级氦气阀门的设计、制造、质量保证、检验和出厂试验。  相似文献   

7.
为了精确地计算反应性温度系数,采用动态规划的方法,求出了燃耗过程中控制棒的临界棒位。利用组件计算软件包TPFAP,计算慢化剂(或燃料)在不同温度下组件的宏观截面。用节块格林函数法,求解三维中子扩散方程,求得慢化剂(或燃料)反应性温度系数。对于200MW核供热堆在临界棒位下,作了三维反应性温度系数的计算,并与二维计算结果作了比较。结果表明,慢化剂温度系数的大小和控制棒插入有密切关系。二维无控制棒时计算的反应性温度系数比较接近三维带控制棒的计算结果,并且二维无控制棒的计算结果是一个保守的估值。  相似文献   

8.
结合10MW高温气冷实验堆(HTR-10)数学模型的推导和控制系统的设计,介绍解决大延迟系统控制的Fuzzy-Smith预估控制器。热工动特性中,堆芯部分用集中参数近似,冷却剂用分布参数处理;蒸汽发生器分为预热段、蒸发段、过热段,建立高温气冷堆的数学模型。扰动量为从额定核功率100%减小到30%,调节氦风机的转速和给水流量使主蒸汽出口温度跟随给定值。仿真结果表明,Fuzzy-Smith预估控制器兼顾了Fuzzy控制和Smith预估控制器的优点,既对延迟特性有较好的补偿作用,又对被控对象参数变化有较强的适应能力,适合于高温气冷堆控制系统设计。  相似文献   

9.
长寿期核供热堆 L NHR(long- cycle nuclear heatingreactor)是可用于多种用途的水冷堆 ,可提供不间断的能源。L NHR设计采用富集度 8%的燃料 ,循环寿期达到 2 2 a。堆内去除了调节和补偿用控制棒 ,增加了堆芯内装料空间 ,减小了水铀比 ,使慢化剂温度系数变得更负。组件中加入可燃毒物钆使循环中反应性变化平缓 ,不需要控制棒介入 ,反应性补偿通过调节可溶硼浓度完成。计算表明 L NHR中铀的平均燃耗达到 6 0 MWd/ kg(2 2 a循环寿期中的最大值为74 MWd/ kg) ,各项参数均满足设计要求  相似文献   

10.
10 MW高温气冷实验堆(HTR-10)蒸汽发生器是管内直流蒸汽发生器,且工作压力为 4. 0 MPa,流动不稳定性必须给予重视。本文应用频域控制理论研究 HTR-10蒸汽发生器两相流密度波不稳定性,对蒸汽发生器的传热和流动建立了数学模型,利用线性微扰原理和Laplace变换推导出闭环系统的特征方程,应用频域控制理论中的Nyquist稳定性定理判断系统的稳定性,在此基础上编制了ADIS程序,并应用此程序分析HTR-10蒸汽发生器的稳定性。结果表明,HTR-10蒸汽发生器在设计负荷下是渐近稳定的。  相似文献   

11.
热管冷却反应堆采用非能动传热技术,热响应速度快,可避免堆芯单点失效,具有功率密度大、寿命长、环境适应性强、工作性能稳定等特点,是目前空间核反应堆研究的热点。本文基于清华大学开发的反应堆蒙特卡洛中子输运程序RMC (Reactor Monte Carlo code),以美国爱荷华国家实验室(Idaho National Laboratory, INL)设计的热管冷却反应堆INL Design A为研究对象,选取3种热管工质开展热管冷却反应堆堆芯物理计算。计算结果表明:锂热管工质不仅拥有很好的热物性参数,并且使用锂热管工质的热管冷却反应堆缓发中子有效份额最大、中子能谱较硬、燃耗反应性损失最小、增殖性能最佳,有利于热管冷却反应堆堆芯小型化与长寿命。因此,推荐锂为热管冷却反应堆的热管工质。  相似文献   

12.
环状模块式高温气冷堆 (HTGR)采用包覆颗粒燃料 ,其乏燃料经过一段时间的堆外冷却后 ,可以再利用。研究了 35 0 MW环状模块式 HTGR乏燃料在加速器驱动的次临界堆中燃烧的物理可行性。给出了功率为 30 MW次临界堆概念设计 ,利用 MCNP程序模拟中子在次临界堆内的输运过程 ,利用 ORIGEN2程序进行燃耗计算。结果表明 :加速器驱动的次临界气冷堆具有可靠的次临界度和低的功率密度 ,用于燃烧 35 0 MW环状模块式 HTGR乏燃料 ,从能源利用的角度考虑 ,可以获得约 2 0 %的额外收益  相似文献   

13.
Introduction The advantages of the modular gas-cooled high tem- perature reactor (HTR) and thorium (Th) based fuel cycles are discussed in this paper. International interest in HTR technology has been increasing in recent years due to a growing recognitio…  相似文献   

14.
简要介绍了10MW高温气冷实验堆(HTR-10)工程投资控制系统的设计情况和软件开发状况。对核工程的投资控制方法进行了探讨,在传统的投资与进度联合控制方法的基础上,提出了从项目管理者角度进行宏观投资与进度联合控制的想法。在此基础上,着重介绍了成本曲线(S曲线)和靶心图的基本概念,并对靶心图进行了改进,采用等值靶心图方法实现联合控制。通过相应投资控制软件的开发,可以看到在项目管理中按步骤、由简单到复杂地应用先进的项目管理技术,是符合我国国情的、较为实际的方法。  相似文献   

15.
由于模块式高温气冷堆 (MHTGR)是燃烧 Pu的一种选择 ;Th燃料循环可以限制 Pu的产生和减少高放废物 ,因此研究了在 Th 燃料循环模块式高温气冷堆(PBMHTGR)中燃烧 Pu的物理特性。PBMHTGR初装燃料元件中 Pu的同位素的含量与现行的生产能量堆模块式高温气冷堆 (EPMHTGR)相同 ,考虑反应性的要求 ,加入了2 3 3 U。利用 VSOP程序分析这两个堆的物理特性。结果表明 ,PBMHTGR能够燃烧掉同等功率 6个以上 EPMHTGR产生的 Pu。这表明 ,在 Th燃料循环 MHTGR中 ,燃烧钚是可行的  相似文献   

16.
为了降低以(U、Pu、Np、Am、Cm)O2为燃料的加速器驱动次临界快堆(ADSFR)堆芯径的功率峰因子,将堆芯精细地分为燃料高、低富集度区.采用耦合散裂中子源的产生(LAHET)、中子输运(MCNP)和核素燃耗(ORIGEN2)等计算程序的COUPLE程序系统进行计算分析.结果显示,在设定的0.97初始临界度下,富集度分割比为1.5时将给出最有利的结果:初始的全堆功率峰因子为1.692;以840 MW的热功率运行过程中,尽管全堆的功率峰因子不断升高,但至300 d时,只达到1.963.堆芯物理设计满足预期要求.  相似文献   

17.
不同可燃毒物的布置方式可以控制整个燃耗寿期下的反应性波动并且可以提高燃耗深度。本工作在不同富集度下分析可燃毒物的布置方式对堆芯反应性的影响。并对堆芯k_(eff)在整个燃耗寿期下的变化趋势进行分析。结果表明:1)含可燃毒物B和Gd的堆芯,采用16根可燃毒物棒的布置方式;含可燃毒物Er和Eu的堆芯,采用28根可燃毒物棒的布置方式;含可燃毒物~(231)Pa、~(240)Pu和~(241)Am的堆芯,采用组件燃料棒中均含可燃毒物的布置方式。2)在14%富集度下选用~(240)Pu作为可燃毒物;在40%、70%和97%富集度下选用B作为可燃毒物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号