首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Determinants of woody cover in African savannas   总被引:8,自引:0,他引:8  
Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than approximately 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of approximately 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation may considerably affect their distribution and dynamics.  相似文献   

2.
van Groenigen KJ  Osenberg CW  Hungate BA 《Nature》2011,475(7355):214-216
Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.  相似文献   

3.
 森林和草原等陆地生态系统在全球碳循环中扮演非常重要的角色,而发育在半干旱地区沙地上的疏林草地植被在这方面的作用还不清楚.本文对内蒙古浑善达克沙地榆树(Ulmus pumila L.)疏林草地的生物量、生产力(NPP)以及降水利用效率(RUE)区分不同生境,即固定沙地、半固定沙地、流动沙地、丘间低地、柳灌丛和低湿地进行了研究;分析和比较了植被碳库及NPP的分配情况.结果表明,疏林草地的平均生物量(21.30Mg·hm-2)与NPP(11.06Mg·hm-2·a-1)分别比典型草原地带的平均值高90%和59%,RUE近于后者的2倍,沙地水平上的地下与地上生物量之比为2.9,说明大量的植被碳贮藏于地下,沙地中乔木对生物量和NPP的贡献不大,分别为10%和1.3%,但对于维持疏林草地的完整性具有重要功能.浑善达克沙地的疏林草地生态系统与地带性的典型温带草原不同,应属于一类温带萨王那生态系统类型,合理的管理和恢复措施将有助于其在畜牧业和碳固持方面生态系统服务功能的实现.  相似文献   

4.
Xu  YanWei  Kang  ShiChang  Zhang  YuLan  Zhang  YongJun 《科学通报(英文版)》2011,56(14):1511-1517
During the summer monsoon season,the moisture of precipitation events in southern and central regions of the Tibetan Plateau is mainly moisture from the Indian Ocean transported by the Indian monsoon and terrestrial vapor derived from the surface of the Tibetan Plateau.However,the respective contributions of these two types of moisture are not clear.From June to September,the excess deuterium values of precipitation and river water in the Nam Co basin are higher than those for the southern Tibetan Plateau.This reflects the mixing of evaporation from Nam Co and local atmospheric vapor.On the basis of theory for estimating the contribution of evaporative vapor from surface water bodies to atmospheric vapor and relative stable isotopes in water bodies (precipitation,river water,atmospheric moisture and lake water),this study preliminarily estimates that the average contribution of evaporation from the Lake Nam Co to local atmospheric vapor has varied from 28.4% to 31.1% during the summer monsoon season in recent years.  相似文献   

5.
植物与土壤之间相互反馈的格局、过程与机制,不但是决定生态系统结构、功能及过程的关键科学问题,而且是陆地生态系统响应全球变化的重要组成部分。基于目前国内外研究现状,从养分循环角度剖析“植物-土壤”间的反馈效应,探明相互反馈在空间尺度(根面、根际、种类、生态系统以及区域等)与时间尺度(秒至千年)上的级联效应及其变化格局;阐明根际、植物种类、生态系统及区域地理等水平上“植物-土壤”的相互反馈机制,重点揭示根系分泌、共生、生长及代谢的根际界面过程对植物水分/养分吸收与土壤物理学修饰的调控机制,剖析“植物种类-凋落物化学-土壤生物-土壤有机质”相互作用对地上-地下养分循环过程的驱动机制,运用“上行-下行控制理论及腐屑食物网模型”揭示地上-地下生物群落交互作用的过程与机制,以及土壤地质演变(岩石风化模式、土壤形成模式及土壤养分格局的变化)与区域植被演替(优势种更替及植被分布模式、地上-地下凋落物输入格局等的变化)相互反馈的过程与机制;从“植物-土壤”相互反馈的理论视角,分析生态退化与恢复、外来物种生态入侵、大气氮沉降、二氧化碳浓度升高以及植物多样性减少等全球生态问题的特征、形成机制以及可能的应对策略,揭示生态系统“地上-地下”相互反馈的生态学过程,以及陆地生态系统对全球生态环境变化的响应特征与机理。  相似文献   

6.
植被净初级生产力(Net Primary Productivity,NPP)是判定陆地生态系统碳汇/源的关键要素,不仅直接代表了自然环境条件下植被群落的生产能力,还体现了陆地生态系统的质量水平。本文基于陆地生态系统碳汇模型(CASA模型),利用2019年中分辨率成像光谱仪(MODIS)归一化植被指数(NDVI)数据和其他气象数据,对月、季节、年尺度上的广西植被NPP的空间变化进行估算,分析其时空变化特征,并探讨不同植被类型、气象因子和地形地貌对其的影响。结果表明:2019年广西整体区域的植被NPP平均值为880.56 g C·m-2·a-1,植被NPP空间分布呈内陆中心向四周递增、东北部向西南部递增的特点。月植被NPP在时间序列上总体呈现正弦曲线的变化特征,1-8月的植被NPP呈上升趋势,在8月达到峰值,而且9月仍然维持较高值;之后至12月,植被NPP逐步下降。广西植被NPP的季节变化明显,冬季的植被NPP整体最低,区域差异性不突出;夏季的植被NPP整体最高,区域差异性突出。常绿阔叶和混交林分布面积广且其光能利用率较大,对广西植被NPP贡献较大。从月尺度上来看,月植被NPP与月累计降水量主要呈负相关关系,与月平均气温主要呈正相关关系;月平均气温与月植被NPP的偏相关性比月累计降水显著,月平均气温是广西月植被NPP的主要影响因子。在中海拔地区(700-1 300 m),植被NPP并不受喀斯特地质环境背景的影响,喀斯特地区和非喀斯特地区植被NPP相差不大且随着海拔高度的上升趋于稳定。在全球变化背景下,分析广西植被NPP的时空演变规律及其与环境要素之间的关系,可为广西生态环境监测与管理、生物多样性保护、生态服务评估等提供科学参考。  相似文献   

7.
Ecosystem carbon loss with woody plant invasion of grasslands   总被引:51,自引:0,他引:51  
Jackson RB  Banner JL  Jobbágy EG  Pockman WT  Wall DH 《Nature》2002,418(6898):623-626
The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr(-1)) by comparing carbon and nitrogen budgets and soil delta(13)C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.  相似文献   

8.
Terrestrial ecosystems control carbon dioxide fluxes to and from the atmosphere through photosynthesis and respiration, a balance between net primary productivity and heterotrophic respiration, that determines whether an ecosystem is sequestering carbon or releasing it to the atmosphere. Global and site-specific data sets have demonstrated that climate and climate variability influence biogeochemical processes that determine net ecosystem carbon dioxide exchange (NEE) at multiple timescales. Experimental data necessary to quantify impacts of a single climate variable, such as temperature anomalies, on NEE and carbon sequestration of ecosystems at interannual timescales have been lacking. This derives from an inability of field studies to avoid the confounding effects of natural intra-annual and interannual variability in temperature and precipitation. Here we present results from a four-year study using replicate 12,000-kg intact tallgrass prairie monoliths located in four 184-m(3) enclosed lysimeters. We exposed 6 of 12 monoliths to an anomalously warm year in the second year of the study and continuously quantified rates of ecosystem processes, including NEE. We find that warming decreases NEE in both the extreme year and the following year by inducing drought that suppresses net primary productivity in the extreme year and by stimulating heterotrophic respiration of soil biota in the subsequent year. Our data indicate that two years are required for NEE in the previously warmed experimental ecosystems to recover to levels measured in the control ecosystems. This time lag caused net ecosystem carbon sequestration in previously warmed ecosystems to be decreased threefold over the study period, compared with control ecosystems. Our findings suggest that more frequent anomalously warm years, a possible consequence of increasing anthropogenic carbon dioxide levels, may lead to a sustained decrease in carbon dioxide uptake by terrestrial ecosystems.  相似文献   

9.
Ecosystem respiration is the biotic conversion of organic carbon to carbon dioxide by all of the organisms in an ecosystem, including both consumers and primary producers. Respiration exhibits an exponential temperature dependence at the subcellular and individual levels, but at the ecosystem level respiration can be modified by many variables including community abundance and biomass, which vary substantially among ecosystems. Despite its importance for predicting the responses of the biosphere to climate change, it is as yet unknown whether the temperature dependence of ecosystem respiration varies systematically between aquatic and terrestrial environments. Here we use the largest database of respiratory measurements yet compiled to show that the sensitivity of ecosystem respiration to seasonal changes in temperature is remarkably similar for diverse environments encompassing lakes, rivers, estuaries, the open ocean and forested and non-forested terrestrial ecosystems, with an average activation energy similar to that of the respiratory complex (approximately 0.65?electronvolts (eV)). By contrast, annual ecosystem respiration shows a substantially greater temperature dependence across aquatic (approximately 0.65?eV) versus terrestrial ecosystems (approximately 0.32?eV) that span broad geographic gradients in temperature. Using a model derived from metabolic theory, these findings can be reconciled by similarities in the biochemical kinetics of metabolism at the subcellular level, and fundamental differences in the importance of other variables besides temperature—such as primary productivity and allochthonous carbon inputs—on the structure of aquatic and terrestrial biota at the community level.  相似文献   

10.
Resource-use efficiency and plant invasion in low-resource systems   总被引:4,自引:0,他引:4  
Funk JL  Vitousek PM 《Nature》2007,446(7139):1079-1081
No species can maximize growth, reproduction and competitive ability across all environments, so the success of invasive species is habitat-dependent. Nutrient-rich habitats often experience more invasion than resource-poor habitats, a pattern consistent with traits generally associated with successful invaders (high growth rates, early reproduction and many offspring). However, invaders do colonize resource-poor environments, and the mechanisms that allow their success in these systems are poorly understood. Traits associated with resource conservation are widespread among species adapted to resource-poor environments, and invasive species may succeed in low-resource environments by employing resource conservation traits such as high resource-use efficiency (RUE; carbon assimilation per unit of resource). We investigated RUE in invasive and native species from three habitats in Hawaii where light, water or nutrient availability was limiting to plant growth. Here we show that across multiple growth forms and broad taxonomic diversity invasive species were generally more efficient than native species at using limiting resources on short timescales and were similarly efficient when RUE measures were integrated over leaf lifespans. Our data challenge the idea that native species generally outperform invasive species under conditions of low resource availability, and suggest that managing resource levels is not always an effective strategy for invasive species control.  相似文献   

11.
Watanabe Y  Martini JE  Ohmoto H 《Nature》2000,408(6812):574-578
Microorganisms have flourished in the oceans since at least 3.8 billion years (3.8 Gyr) ago, but it is not at present clear when they first colonized the land. Organic matter in some Au/U-rich conglomerates and ancient soils of 2.3-2.7 Gyr age has been suggested as remnants of terrestrial organisms. Some 2.7-Gyr-old stromatolites have also been suggested as structures created by terrestrial organisms. However, it has been disputed whether this organic matter is indigenous or exogenic, and whether these stromatolites formed in marine or fresh water. Consequently, the oldest undisputed remnants of terrestrial organisms are currently the 1.2-Gyr-old microfossils from Arizona, USA. Unusually carbonaceous ancient soils--palaeosols--have been found in the Mpumalanga Province (Eastern Transvaal) of South Africa. Here we report the occurrences, elemental ratios (C, H, N, P) and isotopic compositions of this organic matter and its host rocks. These data show that the organic matter very probably represents remnants of microbial mats that developed on the soil surface between 2.6 and 2.7 Gyr ago. This places the development of terrestrial biomass more than 1.4 billion years earlier than previously reported.  相似文献   

12.
Engstrom DR  Fritz SC  Almendinger JE  Juggins S 《Nature》2000,408(6809):161-166
As newly formed landscapes evolve, physical and biological changes occur that are collectively known as primary succession. Although succession is a fundamental concept in ecology, it is poorly understood in the context of aquatic environments. The prevailing view is that lakes become more enriched in nutrients as they age, leading to increased biological production. Here we report the opposite pattern of lake development, observed from the water chemistry of lakes that formed at various times within the past 10,000 years during glacial retreat at Glacier Bay, Alaska. The lakes have grown more dilute and acidic with time, accumulated dissolved organic carbon and undergone a transient rise in nitrogen concentration, all as a result of successional changes in surrounding vegetation and soils. Similar trends are evident from fossil diatom stratigraphy of lake sediment cores. These results demonstrate a tight hydrologic coupling between terrestrial and aquatic environments during the colonization of newly deglaciated landscapes, and provide a conceptual basis for mechanisms of primary succession in boreal lake ecosystems.  相似文献   

13.
Austin AT  Vivanco L 《Nature》2006,442(7102):555-558
The carbon balance in terrestrial ecosystems is determined by the difference between inputs from primary production and the return of carbon to the atmosphere through decomposition of organic matter. Our understanding of the factors that control carbon turnover in water-limited ecosystems is limited, however, as studies of litter decomposition have shown contradictory results and only a modest correlation with precipitation. Here we evaluate the influence of solar radiation, soil biotic activity and soil resource availability on litter decomposition in the semi-arid Patagonian steppe using the results of manipulative experiments carried out under ambient conditions of rainfall and temperature. We show that intercepted solar radiation was the only factor that had a significant effect on the decomposition of organic matter, with attenuation of ultraviolet-B and total radiation causing a 33 and 60 per cent reduction in decomposition, respectively. We conclude that photodegradation is a dominant control on above-ground litter decomposition in this semi-arid ecosystem. Losses through photochemical mineralization may represent a short-circuit in the carbon cycle, with a substantial fraction of carbon fixed in plant biomass being lost directly to the atmosphere without cycling through soil organic matter pools. Furthermore, future changes in radiation interception due to decreased cloudiness, increased stratospheric ozone depletion, or reduced vegetative cover may have a more significant effect on the carbon balance in these water-limited ecosystems than changes in temperature or precipitation.  相似文献   

14.
Raymond PA  Oh NH  Turner RE  Broussard W 《Nature》2008,451(7177):449-452
The water and dissolved inorganic carbon exported by rivers are important net fluxes that connect terrestrial and oceanic water and carbon reservoirs. For most rivers, the majority of dissolved inorganic carbon is in the form of bicarbonate. The riverine bicarbonate flux originates mainly from the dissolution of rock minerals by soil water carbon dioxide, a process called chemical weathering, which controls the buffering capacity and mineral content of receiving streams and rivers. Here we introduce an unprecedented high-temporal-resolution, 100-year data set from the Mississippi River and couple it with sub-watershed and precipitation data to reveal that the large increase in bicarbonate flux that has occurred over the past 50 years (ref. 3) is clearly anthropogenically driven. We show that the increase in bicarbonate and water fluxes is caused mainly by an increase in discharge from agricultural watersheds that has not been balanced by a rise in precipitation, which is also relevant to nutrient and pesticide fluxes to the Gulf of Mexico. These findings demonstrate that alterations in chemical weathering are relevant to improving contemporary biogeochemical budgets. Furthermore, land use change and management were arguably more important than changes in climate and plant CO2 fertilization to increases in riverine water and carbon export from this large region over the past 50 years.  相似文献   

15.
Stability of alpine meadow ecosystem on the Qinghai- Tibetan Plateau   总被引:11,自引:0,他引:11  
THE QINGHAI-TIBETAN PLATEAU PLAYS AN IMPORTANT ROLE IN THE ATMOSPHERIC CIRCULATION AND REGIONAL MONSOON CLIMATE, WHICH HAS GREAT INFLUENCE ON THE REGIONAL AND GLOBAL CLIMATE. THUS, THE CHANGE OF THE QINGHAI-TIBETAN PLATEAU ECOSYSTEM IS EXPECTED TO AFFECT …  相似文献   

16.
济南市水生态功能区划研究   总被引:2,自引:0,他引:2  
水生态功能分区是基于对流域水生态系统的区域差异提出的一种分区方法.形成生态系统空间差异性的主要驱动因素是自然地理条件差异和人类活动影响.水生态分区是实现流域可持续发展的必要条件.通过分析济南市陆地和水生态系统特点,提出了水生态功能分区的基本原则、指标体系等.基于GIS分析技术,得到了济南市一级、二级和三级水生态功能分区.一级分区以集水区水文条件3大水系为依据,分别为黄河水系、小清河水系和徒骇马颊河水系,划分3大流域外加城区组成.二级水生态分区则以土壤类型及土地利用为主导因子.三级水生态功能分区则反映二组分区内功能差异,运用指标体系评价方法,对流域的生物多样性维持、生境维持、水环境支持、水资源支持4项生态功能进行评价,在GIS技术支持下,利用空间叠加方法,按主导功能类型完成流域内水生态功能三级分区.  相似文献   

17.
A unifying framework for dinitrogen fixation in the terrestrial biosphere   总被引:8,自引:0,他引:8  
Houlton BZ  Wang YP  Vitousek PM  Field CB 《Nature》2008,454(7202):327-330
Dinitrogen (N(2)) fixation is widely recognized as an important process in controlling ecosystem responses to global environmental change, both today and in the past; however, significant discrepancies exist between theory and observations of patterns of N(2) fixation across major sectors of the land biosphere. A question remains as to why symbiotic N(2)-fixing plants are more abundant in vast areas of the tropics than in many of the mature forests that seem to be nitrogen-limited in the temperate and boreal zones. Here we present a unifying framework for terrestrial N(2) fixation that can explain the geographic occurrence of N(2) fixers across diverse biomes and at the global scale. By examining trade-offs inherent in plant carbon, nitrogen and phosphorus capture, we find a clear advantage to symbiotic N(2) fixers in phosphorus-limited tropical savannas and lowland tropical forests. The ability of N(2) fixers to invest nitrogen into phosphorus acquisition seems vital to sustained N(2) fixation in phosphorus-limited tropical ecosystems. In contrast, modern-day temperatures seem to constrain N(2) fixation rates and N(2)-fixing species from mature forests in the high latitudes. We propose that an analysis that couples biogeochemical cycling and biophysical mechanisms is sufficient to explain the principal geographical patterns of symbiotic N(2) fixation on land, thus providing a basis for predicting the response of nutrient-limited ecosystems to climate change and increasing atmospheric CO(2).  相似文献   

18.
目的了解城乡空间差异下森林土壤活性有机碳的动态变化和影响因素,为城市森林生态系统的碳循环研究提供数据支撑。  相似文献   

19.
陕南降水变化时空差异分析   总被引:3,自引:1,他引:2  
陕南地处南水北调中线工程水源地,降水量变化对该区域以及调水工程和受水区影响深刻.利用陕南及周边气象站点近30年的降水资料,运用经验正交函数法,分析获得陕南降水变化的空间分布特征和时间系数.结果表明:(1)陕南降水变化的特点主要表现出南北差异、东西差异和相对一致性的特点;(2)陕南降水变化的时间系数表现出明显的年内变化.  相似文献   

20.
在全球变化的背景下,内蒙古草原生态系统的降水量可能增加或者减少.迄今,降水量的改变对该区域草地生态系统碳交换的影响我们还知之甚少.为此,本研究通过完全控水防雨棚,开展了降水梯度实验,探究该生态系统碳交换(ecosystem carbon exchange)随降水量变化的响应轨迹.结果表明:随着生长季降水量从100mm增加到500mm,净生态系统碳交换(net ecosystem exchange,NEE)、生态系统呼吸(ecosystem respiration,ER)和生态系统总生产力(gross ecosystem productivity,GEP)均显著提高,这些过程均表现为明显的非线性响应.NEE、ER和GEP的饱和点对应的降水量分别为350mm,200mm和275mm.从响应率的变化斜率看,降水量减少(275mm的处理)的效应显著强于降水量增加(275mm的处理)的效应.变异来源分析说明,随着降水量的改变,群落生物量是草原生态系统碳交换的首要影响因素,可以解释NEE、ER和GEP变异的30.89%、41.90%和40.60%,而土壤含水量和土壤温度只能解释NEE、ER和GEP变异的11.51%、7.78%和9.28%.上述结果为我们理解和预测未来降水变化对内蒙古温带典型草原生态系统碳交换的影响提供了依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号