首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Nishida S  Johnston A 《Nature》1999,397(6720):610-612
After adaptation of the visual system to motion of a pattern in a particular direction, a static pattern appears to move in the opposite direction-the motion aftereffect (MAE). It is thought that the MAE is not accompanied by a shift in perceived spatial position of the pattern being viewed, providing psychophysical evidence for a dissociation of the neural processing of motion and position that complements anatomical and physiological evidence of functional specialization in primate and human visual cortex. However, here we measure the perceived orientation of a static windmill pattern after adaptation to rotary motion and find a gradual shift in orientation in the direction of the illusory rotation, though at a rate much lower than the apparent rotation speed. The orientation shift, which started to decline within a few seconds, could persist longer than the MAE, and disappeared when the MAE was nulled by physical motion of the windmill pattern. Our results indicate that the representation of the position of spatial pattern is dynamically updated by neurons involved in the analysis of motion.  相似文献   

2.
P Thompson  G Latchford 《Nature》1986,320(6062):525-526
McCollough reported that following adaptation to (say) a red and black pattern of vertical stripes, alternating every few seconds with a green and black pattern of horizontal stripes, an orientation-contingent colour after-effect is observed when black and white gratings are viewed. Vertical gratings are tinged with green and horizontal gratings with pink. We have exploited colour constancy, the tendency for objects to appear constant in hue despite large changes in the spectral composition of the illuminant, to examine whether the colours observed on the McCollough effect test gratings are determined by the wavelength composition of the adaptation patterns or by their perceived colour. The key to this approach can be illustrated by Edwin Land's elegant demonstrations of colour constancy using 'Mondrian' displays. By embedding the adapting grating that is used to induce the McCollough effect within a Mondrian we show that the effect depends upon the wavelength of light coming from the grating, rather than the perceived colour.  相似文献   

3.
Modulation of the motion aftereffect by selective attention   总被引:4,自引:0,他引:4  
A Chaudhuri 《Nature》1990,344(6261):60-62
The motion aftereffect is a much studied and well documented phenomenon. After viewing a moving visual pattern for a period of time, the same pattern appears to drift in the opposite direction when it is stopped. Psychophysical experiments involving interocular transfer, dichoptic stimulation, and motion aftereffects contingent upon other visual parameters such as colour, orientation and texture, imply that the motion aftereffect is generated at the level of the visual cortex. It has been hypothesized that cortical neurons specialized for the detection of motion along a particular direction become 'fatigued' during the adaptation period so that the resting equilibrium subsequently shifts in the opposite direction to that of the adapting stimulus, giving rise to the sensation of the aftereffect. I have found that if observers are engaged in a separate discrimination task superimposed on a moving textured background, the subsequent motion aftereffect to the background is considerably reduced. It seems that motion aftereffects are susceptible to attentional mechanisms.  相似文献   

4.
Liu G  Seiler H  Wen A  Zars T  Ito K  Wolf R  Heisenberg M  Liu L 《Nature》2006,439(7076):551-556
The fly Drosophila melanogaster can discriminate and remember visual landmarks. It analyses selected parts of its visual environment according to a small number of pattern parameters such as size, colour or contour orientation, and stores particular parameter values. Like humans, flies recognize patterns independently of the retinal position during acquisition of the pattern (translation invariance). Here we show that the central-most part of the fly brain, the fan-shaped body, contains parts of a network mediating visual pattern recognition. We have identified short-term memory traces of two pattern parameters--elevation in the panorama and contour orientation. These can be localized to two groups of neurons extending branches as parallel, horizontal strata in the fan-shaped body. The central location of this memory store is well suited to mediate translational invariance.  相似文献   

5.
M Green  M Chilcoat  C F Stromeyer 《Nature》1983,304(5921):61-62
Prolonged viewing of a moving pattern selectively elevates the threshold for a pattern moving in the same direction and induces the classical motion aftereffect (MAE). The aftereffect is seen as a slow drift in the opposite direction, which is visible even with the eyes shut or while viewing a uniform field. However, as we report here, a strikingly different aftereffect is seen when the test field is uniform and sinusoidally flickered: the field is filled with rapid motion in the direction opposite the adapting motion. This flicker MAE has distinct properties: the adapting grating must be of low spatial frequency; the effect is promoted by high contrast and high temporal frequencies of both adapting and test stimuli; and the aftereffect does not transfer interocularly. In all these respects the flicker MAE differs from the traditional MAE. Motion detectors have been identified in human vision by the threshold detectability and discriminability of moving patterns and by selective adaptation. The flicker MAE selectively taps a class of transient motion mechanisms that are selective for rapid motion and low spatial frequency. Uniform flicker is an effective stimulus for these mechanisms. It thus appears that the human visual system contains at least two distinct classes of mechanisms for sensing motion.  相似文献   

6.
He S  MacLeod DI 《Nature》2001,411(6836):473-476
Exposure to visual patterns of high contrast (for example, gratings formed by alternating white and black bars) creates after-effects in perception. We become temporarily insensitive to faint test patterns that resemble the pre-exposed pattern (such as gratings of the same orientation), and we require more contrast to detect them. Moreover, if the test pattern is slightly tilted relative to the pre-exposed one, this tilt may be perceptually exaggerated: we experience a tilt after-effect. Here we show that these visual after-effects occur even if the pre-exposed grating is too fine to be perceptually resolved. After looking at a very fine grating, so high in spatial frequency that it was perceptually indistinguishable from a uniform field, observers required more contrast to detect a test grating presented at the same orientation than one presented at the orthogonal orientation. They also experienced a tilt after-effect that depended on the relation of the test pattern's tilt to the unseen orientation of the pre-exposed pattern. Because these after-effects are due to changes in orientation-sensitive mechanisms in visual cortex, our observations imply that extremely fine details, even those too fine to be seen, can penetrate the visual system as far as the cortex, where they are represented neurally without conscious awareness.  相似文献   

7.
L E White  D M Coppola  D Fitzpatrick 《Nature》2001,411(6841):1049-1052
Sensory experience begins when neural circuits in the cerebral cortex are still immature; however, the contribution of experience to cortical maturation remains unclear. In the visual cortex, the selectivity of neurons for oriented stimuli at the time of eye opening is poor and increases dramatically after the onset of visual experience. Here we investigate whether visual experience has a significant role in the maturation of orientation selectivity and underlying cortical circuits using two forms of deprivation: dark rearing, which completely eliminates experience, and binocular lid suture, which alters the pattern of sensory driven activity. Orientation maps were present in dark-reared ferrets, but fully mature levels of tuning were never attained. In contrast, only rudimentary levels of orientation selectivity were observed in lid-sutured ferrets. Despite these differences, horizontal connections in both groups were less extensive and less clustered than normal, suggesting that long-range cortical processing is not essential for the expression of orientation selectivity, but may be needed for the full maturation of tuning. Thus, experience is beneficial or highly detrimental to cortical maturation, depending on the pattern of sensory driven activity.  相似文献   

8.
Induction of visual orientation modules in auditory cortex   总被引:13,自引:0,他引:13  
Sharma J  Angelucci A  Sur M 《Nature》2000,404(6780):841-847
Modules of neurons sharing a common property are a basic organizational feature of mammalian sensory cortex. Primary visual cortex (V1) is characterized by orientation modules--groups of cells that share a preferred stimulus orientation--which are organized into a highly ordered orientation map. Here we show that in ferrets in which retinal projections are routed into the auditory pathway, visually responsive neurons in 'rewired' primary auditory cortex are also organized into orientation modules. The orientation tuning of neurons within these modules is comparable to the tuning of cells in V1 but the orientation map is less orderly. Horizontal connections in rewired cortex are more patchy and periodic than connections in normal auditory cortex, but less so than connections in V1. These data show that afferent activity has a profound influence on diverse components of cortical circuitry, including thalamocortical and local intracortical connections, which are involved in the generation of orientation tuning, and long-range horizontal connections, which are important in creating an orientation map.  相似文献   

9.
Sekiyama K  Miyauchi S  Imaruoka T  Egusa H  Tashiro T 《Nature》2000,407(6802):374-377
People adapt with remarkable flexibility to reversal of the visual field caused by prism spectacles. With sufficient time, this adaptation restores visually guided behaviour and perceptual harmony between the visible and tactile worlds. Although it has been suggested that seeing one's own body is crucial for adaptation, the underlying mechanisms are unclear. Here we show that a new representation of visuomotor mapping with respect to the hands emerges in a month during adaptation to reversed vision. The subjects become bi-perceptual, or able to use both new and old representations. In a visual task designed to assess the new hand representation, subjects identified visually presented hands as left or right by matching the picture to the representation of their own hands. Functional magnetic resonance imaging showed brain activity in the left posterior frontal cortex (Broca's area) that was unique to the new hand representations of both hands, together with activation in the intraparietal sulcus and prefrontal cortex. The emergence of the new hand representation coincided with the adaptation of perceived location of visible objects in space. These results suggest that the hand representation operates as a visuomotor transformation device that provides an arm-centred frame of reference for space perception.  相似文献   

10.
Foci of orientation plasticity in visual cortex   总被引:5,自引:0,他引:5  
Dragoi V  Rivadulla C  Sur M 《Nature》2001,411(6833):80-86
Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains that converge at singularities or pinwheel centres. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1.  相似文献   

11.
Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.  相似文献   

12.
Gutnisky DA  Dragoi V 《Nature》2008,452(7184):220-224
Our perception of the environment relies on the capacity of neural networks to adapt rapidly to changes in incoming stimuli. It is increasingly being realized that the neural code is adaptive, that is, sensory neurons change their responses and selectivity in a dynamic manner to match the changes in input stimuli. Understanding how rapid exposure, or adaptation, to a stimulus of fixed structure changes information processing by cortical networks is essential for understanding the relationship between sensory coding and behaviour. Physiological investigations of adaptation have contributed greatly to our understanding of how individual sensory neurons change their responses to influence stimulus coding, yet whether and how adaptation affects information coding in neural populations is unknown. Here we examine how brief adaptation (on the timescale of visual fixation) influences the structure of interneuronal correlations and the accuracy of population coding in the macaque (Macaca mulatta) primary visual cortex (V1). We find that brief adaptation to a stimulus of fixed structure reorganizes the distribution of correlations across the entire network by selectively reducing their mean and variability. The post-adaptation changes in neuronal correlations are associated with specific, stimulus-dependent changes in the efficiency of the population code, and are consistent with changes in perceptual performance after adaptation. Our results have implications beyond the predictions of current theories of sensory coding, suggesting that brief adaptation improves the accuracy of population coding to optimize neuronal performance during natural viewing.  相似文献   

13.
Gaze direction controls response gain in primary visual-cortex neurons   总被引:11,自引:0,他引:11  
Trotter Y  Celebrini S 《Nature》1999,398(6724):239-242
To localize objects in space, the brain needs to combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbits. Interaction between these two types of information occurs in several cortical areas, but the role of the primary visual cortex (area V1) in this process has remained unclear. Here we show that, for half the cells recorded in area V1 of behaving monkeys, the classically described visual responses are strongly modulated by gaze direction. Specifically, we find that selectivity for horizontal retinal disparity-the difference in the position of a stimulus on each retina which relates to relative object distance-and for stimulus orientation may be present at a given gaze direction, but be absent or poorly expressed at another direction. Shifts in preferred disparity also occurred in several neurons. These neural changes were most often present at the beginning of the visual response, suggesting a feedforward gain control by eye position signals. Cortical neural processes for encoding information about the three-dimensional position of a stimulus in space therefore start as early as area V1.  相似文献   

14.
W S Geisler 《Nature》1999,400(6739):65-69
Although many neurons in the primary visual cortex (V1) of primates are direction selective, they provide ambiguous information about the direction of motion of a stimulus. There is evidence that one of the ways in which the visual system resolves this ambiguity is by computing, from the responses of V1 neurons, velocity components in two or more spatial orientations and then combining these velocity components. Here I consider another potential neural mechanism for determining motion direction. When a localized image feature moves fast enough, it should become smeared in space owing to temporal integration in the visual system, creating a spatial signal-a 'motion streak'-oriented in the direction of the motion. The orientation masking and adaptation experiments reported here show that these spatial signals for motion direction exist in the human visual system for feature speeds above about 1 feature width per 100 ms. Computer simulations show that this psychophysical finding is consistent with the known response properties of V1 neurons, and that these spatial signals, when appropriately processed, are sufficient to determine motion direction in natural images.  相似文献   

15.
Tadin D  Lappin JS  Gilroy LA  Blake R 《Nature》2003,424(6946):312-315
Centre-surround receptive field organization is a ubiquitous property in mammalian visual systems, presumably tailored for extracting image features that are differentially distributed over space. In visual motion, this is evident as antagonistic interactions between centre and surround regions of the receptive fields of many direction-selective neurons in visual cortex. In a series of psychophysical experiments we make the counterintuitive observation that increasing the size of a high-contrast moving pattern renders its direction of motion more difficult to perceive and reduces its effectiveness as an adaptation stimulus. We propose that this is a perceptual correlate of centre-surround antagonism, possibly within a population of neurons in the middle temporal visual area. The spatial antagonism of motion signals observed at high contrast gives way to spatial summation as contrast decreases. Evidently, integration of motion signals over space depends crucially on the visibility of those signals, thereby allowing the visual system to register motion information efficiently and adaptively.  相似文献   

16.
模拟真实场景反应在人眼中形成图像的过程,考虑到邻域间干扰、光照不均匀、媒介传递率下降引起的图像退化,提出了一种新的图像增强算法。依据对视觉现象中对比灵敏度、亮度适应能力和侧抑制现象的研究,建立了一种图像退化模型的视觉适应性模型,该模型求解方案包含3个过程:用于消除邻近像素相互影响,给人眼提供更多细节的去卷积过程;据锥细胞亮度适应能力提出的,为其工作提供最佳工作光照条件的亮度调整过程;模拟侧抑制机理提出的对比度拉伸过程。对比现有图像增强算法的增强结果,实验结果表明该方法的视觉适应性解,在增强图像细节、提升对比度、增强结果的视觉愉悦性方面取得了较大进步。  相似文献   

17.
The temporal properties of pattern adaptation of relay cells induced by repeated sinusoidal drifting grating were investigated in the dorsal lateral geniculate nucleus (dLGN) of cats. The results showed that the response amplitude declined and the response latency prolonged when relay cells were pattern-adapted in dLGN, like the similar findings in visual cortex. However, in contrast to the result in cortex, the response phase of relay cells advanced. This implies that an inhibition with relatively long latency may participate in the pattern adaptation of dLGN cells and the adaptation in dLGN may be via a mechanism different from that of visual cortex.  相似文献   

18.
D Sagi  B Julesz 《Nature》1986,321(6071):693-695
There is increasing evidence that it is possible to shift an aperture of focal attention to a position in visual space independent of fixation and that this can be done much faster than the eyes are able to move. Recently, we showed that such serial scrutiny by the aperture of focal attention is required before an observer is able to tell what a target is (for example, to know whether the orientation of a line segment is horizontal or vertical). Here we considered whether attention directed towards a specific position in the visual field for an orientation discrimination task improves performance on a simple detection task in the area to which attention is directed. We found that a small test flash could be detected when it was positioned near a peripheral line target presented briefly, if the orientation of the target had to be identified. The test flash could not be detected when presented at some distance from the same target or when another target had to be identified. This enhancement implies that even simple identification tasks such as orientation discrimination are not performed passively by the visual system.  相似文献   

19.
D C Knill  D Kersten 《Nature》1991,351(6323):228-230
The human visual system has the remarkable capacity to perceive accurately the lightness, or relative reflectance, of surfaces, even though much of the variation in image luminance may be caused by other scene attributes, such as shape and illumination. Most physiological, and computational models of lightness perception invoke early sensory mechanisms that act independently of, or before, the estimation of other scene attributes. In contrast to the modularity of lightness perception assumed in these models are experiments that show that supposedly 'higher-order' percepts of planar surface attributes, such as orientation, depth and transparency, can influence perceived lightness. Here we show that perceived surface curvature can also affect perceived lightness. The results of the earlier experiments indicate that perceiving luminance edges as changes in surface attributes other than reflectance can influence lightness. These results suggest that the interpretation of smooth variations in luminance can also affect lightness percepts.  相似文献   

20.
C D Salzman  K H Britten  W T Newsome 《Nature》1990,346(6280):174-177
Neurons in the visual cortex respond selectively to perceptually salient features of the visual scene, such as the direction and speed of moving objects, the orientation of local contours, or the colour or relative depth of a visual pattern. It is commonly assumed that the brain constructs its percept of the visual scene from information encoded in the selective responses of such neurons. We have now tested this hypothesis directly by measuring the effect on psychophysical performance of modifying the firing rates of physiologically characterized neurons. We required rhesus monkeys to report the direction of motion in a visual display while we electrically stimulated clusters of directionally selective neurons in the middle temporal visual area (MT, or V5), an extrastriate area that plays a prominent role in the analysis of visual motion information. Microstimulation biased the animals' judgements towards the direction of motion encoded by the stimulated neurons. This result indicates that physiological properties measured at the neuronal level can be causally related to a specific aspect of perceptual performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号