首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表辛矩阵为辛平延之积   总被引:10,自引:0,他引:10  
刘长安 《科学通报》1980,25(4):145-145
一、引言设K为一域,F为K上的一个n×n非奇异交错矩阵。从F的非奇异性可知n=2m为一偶数。K上的n×n矩阵P称为关于F的一个辛矩阵,如果PFP′=F成立。关于F的所有辛矩阵组成一个群,称为域K上由F定义的n级辛群,记作S_(p_(zm))(K,F)。设T为K(上的一个n×  相似文献   

2.
张宝善 《科学通报》1995,40(15):1435-1435
对区间对称矩阵G[B,C]={A|A=(a_(ij))_(n×n)=A~T,b_(ij)≤a_(ij)≤a_(ij)},(1)B=(b_(ij))_(n×n)=B~T,C=(C_(ij))_(n×n)=C~T∈R~(n×n),Bialas研究了G[B,C]渐近稳定的充要条件.后经有关文献(略)得到结论:G[B,C]渐近稳定当且仅当其子集H[B,C]={A|A=(a_(ij))_(n×n)∈G[B,C],a_(ij)=b_(ij)或C_i}(2)渐近稳定.我们进一步构造K[B,C]如下:  相似文献   

3.
环上矩阵保群逆的线性算子   总被引:5,自引:0,他引:5  
曹重光 《科学通报》1992,37(20):1828-1828
设R为有1的环,F为其中心,用M_n(R)记R上n×n全矩阵F-代数。近年来刻划M_n(R)的保某种特性的线性算子的工作颇多,但R为较为一般的环时结果尚少。本文研究群逆的线性保持算子,它也可以看作更广泛一类广义逆共变问题的研究。A∈M_n(R),若矩阵方程AX=XA,A~2X=A,X~2A=x有解则称其解X为A的群逆,记为A~#.设f为  相似文献   

4.
刘金山 《科学通报》1990,35(18):1368-1368
一、引言 考虑半相依回归方程Y_i=X_iβ_i+ε_i(i=1,2),其中Y_i是n×1的随机观测向量,X_i是n×p_i阶列满秩矩阵,β_i是p_i×1的未知回归系数,ε_i是n×1的随机误差向量,且满足E(ε_i)=0,cov(ε_i,ε_j)=σ_(ij)I (i,j=1,2),其中σ_(12)≠0,I是n阶单位阵,Σ=(σ_(ij))是2×2阶正定阵。这样的方程可以写为如下线性模型:  相似文献   

5.
万哲先 《科学通报》1991,36(17):1284-1284
设F_(q~2)是含q~2个元素的有限域,这里q是一个素数的幂。设F_(q~2)的对合自同构,它的固定子域是F_q。F_(q~2)上的n×n矩阵H叫做厄米特矩阵,如果这里表示将H的每个位置上的元素都用它在对合自同构(1)下的像来代替而得到的矩阵,而表示的转置矩阵。两个n×n厄米特矩阵H_1和H_2叫做合同,如果F_(q~2)上有n×n非奇异矩阵P,使。熟知,F_(q~2)上的n×n厄米特矩阵H一定和以下形状的一个矩阵合同:  相似文献   

6.
区间参数矩阵的稳定性   总被引:2,自引:0,他引:2  
施志诚 《科学通报》1987,32(15):1121-1121
一、引言 区间矩阵的稳定性问题的研究,最近取得了一些较好的结果。所谓区间矩阵的稳定性,即考虑n×n实矩阵P=(p_(ij))、Q=(q_(ij)),其中p_(ij)≤q_(ij), i, j=1, 2, …, n,记 N[P,Q]={A=(a_(ij)∈R~(n×n)|p_(ij)≤a_(ij)≤q_(ij), i,j=1,2,…,n},若对任意A∈N[P, Q]均有A稳定(即A的所有特征根的实部均小于零),则称区间矩阵  相似文献   

7.
刘光裕 《科学通报》1984,29(11):702-702
设x是Banach空间,(X)是X上有界线性算子全体,a=(a_1,…,a_n)(X)为交换组,sp(a,x)记J.L.Taylor意义下的联合谱。a称为m可单位分解的(m≥2为固定自然数):若对C~n的任意m开覆盖{G_j}_(j=i)~m,存在与a可换的算子{V_j}_(j=i)~m(V_j称为a的局部投影算子)和a的不变子空间{X_j}_(j=i)~m满足:若对任意自然数m≥2,a是m可单位分解的,则a称为可单位分解的。  相似文献   

8.
张谋成 《科学通报》1988,33(16):1273-1273
本文所讨论的矩阵都是元素在布尔代数B={0,1}上的n×n矩阵。设r是一个非负整数。r-循环(广义循环)布尔矩阵是指元素a_(ij)∈B的这样一个矩阵A=(a_(ij)),其中除第一行外,其余各行元素都是由它们的前一  相似文献   

9.
R. Brandl 《科学通报》1993,38(23):2205-2205
对Sylow 2-子群为交换的有限单群,J.H.Walter证明了如下有名的定理。引理1 若F是Sylow 2-子群为交换的有限非abel单群,则下述结论之一成立: (1) F≌PSL(2,q),q>3,q≡3,5(mod 8)或q=2~n,n≥2; (2) F≌J; (3) F≌R(q),q=3~(2m+1),m≥1。设G是有限群,x_e(G)为G中所有元的  相似文献   

10.
周放 《科学通报》1981,26(14):893-893
本文主要是将域F上线性群GL_n(F)的生成元定理,推广到局部环R上的线性群GL_n(R)上去,因为对于局部环R上的n维R空间V及GL_n(R)中元素σ来说,Q=(σ-1)V及M={x∈V|σx=x}一般只是V的R子模而未必是V的R子空间,所以,O.T.O'Meara所定义的剩余空间的概念不能直接  相似文献   

11.
利用Fuzzy矩阵的Schein秩求本征集   总被引:1,自引:0,他引:1  
房浩鑑 《科学通报》1986,31(19):1517-1517
e=(1,1,…,1)~T,对应本征方程为 AX=X,E.Sanchez证明了定理1 A的最大本征元X_M=A_(n+1)X_1=A_e~n。利用Schein秩定义,王鸿绪等证明了定理2 A的Schein秩ρ_s(A)=s的充要条件是不定方程A=X_(n×m)Y_(m×n)当m=s时有解,当  相似文献   

12.
谢盛荣 《科学通报》1997,42(13):1371-1374
本文设{ξ_i}与{X_i}是概率空间(Ω,F,P)上的两列随机变量,其中{X_i}是i.i.d具有公共分布函数F(x).记 M_n==Vξ_i,M_n=VX_i以及[t]表示t的最大整数部分. 在i.i.d.情形,具有随机足标的最大值的极限分布的主要结果如下(参看文献[1],定理6.2.1): 定理1 设a_n>0,b_n∈R,n≥1,使 P(M_n≤a_nx b_n)→G(x,) n↑∞,(1)其中G是非退化的分布函数。如果一列非负整值随机变量{N_n}满足  相似文献   

13.
吴建宏 《科学通报》1986,31(21):1676-1676
本文通过预解方程■将系统的全局稳定周期解的存在性与方程■的有界解的存在性联系起来,得到关于系统(2)存在周期解的若干代数判别准则及周期解的表达式。其中A为n×n阶常数矩阵,I为n×n阶单位矩阵,Z(t),C(t)及G(t)为定义于t≥0上的n×n阶方阵,f(t)与g(t)为定义于R上的R~n值T周期函数,  相似文献   

14.
任意初始点下的广义梯度投影方法   总被引:5,自引:0,他引:5  
高自友 《科学通报》1992,37(20):1832-1832
本文考虑问题(NP): 其中只={x∈E~n丨h_i(x)≤0,j=1,2,…,m}。 记I={1,2,…,m},g(x)=-▽f(x),φ_θ(x)=max{0,φ(x)},A(x)=(▽h_i(x),j∈I);H(x)为-n×n维对角矩阵,其主对角元为  相似文献   

15.
设A_(m×n)是行和为R=(r_1,r_2,…,r_m)、列和为Q=(q_1,q_2 …,q_n)的(0,1)矩阵。设δ_i=(1,…,1,0,…,0),其中前r_i个位置为1,其余为0,A_(m×n)=称为A_(m×n)的极左矩阵,记其列和向量为S.设L(S)={S|SS,S的分量递降且为非负整数}。若S、TεL(S),S≠T,ST,且不存在V L(S),V≠S,V≠T,满足SVT,则称S是T的直接后继。设S=(S_1,S_2,…,S_n),T=(t_1,t_2,…,t_n),我们有定理1 若S是T的直接后继,则存在i、j’满足S_i+1=t_i,S_j-l=t_j,S_k=t_k(1≤k≤n,  相似文献   

16.
苏育才 《科学通报》1990,35(1):77-77
设A为C上任意具有单位元的结合代数,Xz为A到任意交换结合代数的一个同态,gl_n(A)为A上的n×n矩阵代数,sl_n(A,X)={A∈gl_n(A)|x(trA)=0}为gl_n(A)的李子代数,令历=Kerx。 李代数(或结合代数)L的2-上循环为L的反对称双线性函数,满足  相似文献   

17.
Wielandt不等式的矩阵形式及其统计应用   总被引:3,自引:0,他引:3  
()()王松桂  ()叶伟彰 《科学通报》1998,43(18):1930-1933
设A为n×n正定Hermite阵 ,X和Y分别为n×p和n×q的矩阵 ( p + q≤n) ,满足X Y =0 .证明了如下不等式 :X AY(Y AY) -Y AX ≤ λ1-λnλ1+λn2 X AX ,这里 ,M-表示M的广义逆 .λ1和λn 分别为A的最大和最小特征根 .这个不等式是著名的Wieldandt不等式的矩阵形式 .利用此不等式 ,得到关于协方差矩阵、典则相关系数以及复相关系数的一些有意义的不等式 .  相似文献   

18.
有限交换环上的典型群阶的计算   总被引:9,自引:0,他引:9  
游宏 《科学通报》1994,39(4):289-289
本文计算出任意有1的有限交换环上几类典型群的阶,同时利用GL_(?n)的阶得出有限交换局部环上一般向量空间中的计数定理.设R为有1的有限交换环.R可唯一表成有限个局部环R_i的直积,即R(?)R_i(R_i为有限局部环).R上的典型群G亦可写成G=multiply from i=1 to m G_i,这里G_i为R_i上相应的典型群.因而我们可将所讨论的问题限制在有限交换局部环上.下文如无特别声明,R表示有限交换局部环,M表其唯一的极大理想,K表示商域R/M.令π:R→k表R到k上的典型同态,但我们常记α∈R在k中的象为(?).令(?):GL_nR→GL_nk(SL_nR→SL_nk)表R与k上的一般线性群(特殊线性群)间的同态.记ker(?)=GL_nM(SL_nM),并用GL_n(R,M)(SL_n(R,M))表模M为GL_nK(SL_nk)中心元的GL_nR(SL_nR)中元素组成的子群.  相似文献   

19.
崔恒建 《科学通报》1993,38(6):564-564
设X_1 ,X_2,…,X_niidX~EC_p(μ,Σ),即椭球等高分布:X-μR·Σ1/2U,U为S~(p-1)={a|a∈R~p,‖a‖=1}上的均匀分布,R≥0为已知的非退化r.v.μ∈R~p,Σ_(p×p)>0为未知,我们考虑假设检验问题:H_0Σ=Σ_0>0,K:Σ_0通常在正态假设下,其检验统计量一般用Wishart统计量,Wilks统计量及MLR统计量,而在椭球等高分布下,这些统计量的分布很难求出,只能借助于大样本理论或模拟计算,见文献[1,2],这也同样会遭遇维数灾祸的困难.为此我们利用投影寻踪(pp)方法和1维中检验方差的方法构造Σ的检验统计量如下:  相似文献   

20.
方碧琪 《科学通报》1997,42(20):2236-2236
作为与正态样本有关的分布,矩阵β分布(也称多元β分布)在文献中有大量的研究.令A~W_m(n_1,Σ)和B~W_m(n_2,Σ)为两个独立的维希特分布矩阵,Σ为一正定矩阵. 令C=A B.分解C=T′T,其中T为一具正对角元的上三角阵 令U=(T′)~(-1)·AT~(-1).则U的分布称为矩阵β分布并记为B_m((n_1)/2,(n_2)/2)其中n_1 n_2>m-1. 如果n_i是实数,则还要求n_i>m-1(i=1及/或2).如果n_1,n_2都大于m一1,则U是非退化的并具有在m×m正定矩阵空间上的密度.本文采用文献[2]中的记号,并记A(S)=diag(λ_1(S),…,λ_n(S)),其中λ_i(S)为S的第i大(非零)特征根,S∈_(m,n)~1·S_(m,n)~(?)上的微分形式定义为(dS)=2~(-n)|L|~(m-n)×  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号