首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 234 毫秒
1.
提高电波折射修正精度的关键是提高雷达测试场区大气空间结构精度.本文提出了下垫面复杂地区在雷达电波射线经过区域内进行多点大气探测的新方法——区域法.结果表明,在下垫面复杂地区最好使用区域法测量大气空间结构.  相似文献   

2.
提高电波折射修正精度的关键是提高雷达测试场区大气空间结构精度.本文提出了下垫面复杂地区在雷达电波射线经过区域内进行多点大气探测的新方法--区域法.结果表明,在下垫面复杂地区最好使用区域法测量大气空间结构.  相似文献   

3.
提高雷达探测精度的关键因素之一是对电波折射误差进行高精度的修正。针对目前大气折射率线性插值的方法导致电波射线折射率产生较大误差的情况,依据大气折射率随高度变化的规律,提出了样条插值和最小二乘结合的方法。在0~13 km高度范围内利用样条插值得到连续的折射率曲线,在9~60 km高度范围内利用最小二乘方法拟合出折射率连续的曲线。将样条插值和最小二乘拟合方法得到的折射率与分段插值的折射率、实际探测的大气折射率进行对比,证明样条插值具有较高的精度,最小二乘拟合函数具有计算简便、误差小的优点;将实际探测数据与由样条插值和最小二乘法得到的大气折射率折射误差进行比较,证明了样条插值和最小二乘法可有效提高电波折射修正精度。  相似文献   

4.
为了实施对地面目标的精确打击,空中飞行器上的雷达首先需要对地面目标精确定位.由于雷达电波在大气中传播时会产生折射误差,因而会影响雷达定位精度.针对有关部门的实际需求,以及目前大气折射误差修正基本上都是基于地基雷达的现状.通过选择高精度的对流层和电离层大气模型,利用全国对流层大气参数和电离层大气浓度剖面建立大气折射率剖面数据库.根据电波传播理论,利用射线描迹法推导出了位于电离层中俯视雷达的大气折射误差修正模型和定位误差模型.仿真实验表明,大气折射效应对高空俯视雷达探测精度影响很大.利用该模型可极大地提高俯视雷达的定位精度,为有效打击地面目标奠定基础.  相似文献   

5.
雷达是测量目标位置和速度的常用手段之一.为了提高雷达的测量精度,需要对因大气折射效应而产生的雷达测量误差进行修正.首先简要给出了雷达系统中大气折射误差的问题描述及进行误差修正的思路.然后不仅详细阐述了目前常用的电波射线描迹法、近似修正法和新型修正法等电波折射误差修正技术在雷达定位中的研究和应用现状,而且也阐述了几种用于对雷达测速折射误差修正方法的研究和应用现状,同时,对各种方法的使用范围及其优缺点也进行了简单的分析.最后,给出了雷达系统大气折射误差修正技术在今后的研究方向.  相似文献   

6.
电子系统中电波折射实时修正新方法研究   总被引:1,自引:0,他引:1  
一般常用电波折射误差修正方法存在计算复杂且不具有实时性缺陷.提出了一种电波折射误差修正的新方法,即用微波辐射计采用大气遥感的方法进行电波折射实时修正.它不仅具有全天候、实时性、机动性等特点,而且由于它直接测量出电波传播路径上的大气附加时延积分,从而直接给出距离误差修正量,因此其精度较高.  相似文献   

7.
针对常用电波折射误差修正方法速度慢,无法适应雷达系统实时性要求的现状,提出了一种利用差分方法的高速电波折射误差修正方法.根据雷达电波射线描迹理论,避开积分方程带来的计算速度慢的不足,采用射线差分方程进行电波射线追踪处理,从而在保证高精度的前提下,有效提高了计算速度.仿真实验证明,利用差分方程进行电波折射误差修正的方法与利用积分方程相比,计算速度可提高94%以上.该方法可以直接应用于雷达系统的在线折射误差修正,进一步提高雷达实时定位精度.  相似文献   

8.
目前,GPS全球定位系统在军、民各方面的用途越来越广泛,但是由于空中大气介质的不均匀性使得电波传播速度减慢,射线产生弯曲,从而产生折射误差,因此要提高GPS的定位导航精度,就必须进行电波折射误差修正,本提出了利用气象参数的电波折射误差快速算法,并且进行了精度检验。  相似文献   

9.
为提高无线电测风的精度,在根据二维射线追踪法的基础上,建立了适用于球面分层大气的电波折射高精度在线订正方法,并对电波折射误差及高空风探测误差进行了模拟计算和分析.结果表明,电波折射产生的仰角、斜距和高度误差通常为正值,3类误差均随仰角减小和斜距增大而增大;在低仰角和大斜距的条件下,电波折射误差大于定位设备误差,当仰角低...  相似文献   

10.
Hopfield大气模型的精度分析   总被引:4,自引:2,他引:2  
给出了对流层电波折射误差修正应用中的霍普菲尔德大气模型和精确大气模型.经过仿真可见霍普菲尔德大气模型在我国各典型地区应用时比精确大气模型的误差大得多,尤其在离地高度0.5~7.0 km范围内最为明显,因此在我国对电波折射误差修正时最好不采用霍普菲尔德大气模型.  相似文献   

11.
根据入射光、反射光和折射光之间的位相匹配条件,利用晶体的折射率面,通过作图法,分析了光轴取向任意,自然光从各向同性介质入射到单轴晶体时界面上的反射和双折射.从图上直接得到了反射光波和折射光波的位置,然后利用几何关系,得到了光波反射角和光波折射角的解析表达式.根据介质中光波与光线的关系,进一步分析了反射光线和折射光线的位置,并给出了光波与光线的离散角、光线反射角和光线折射角的解析表达式.该方法简单直观,结果具有一般性.  相似文献   

12.
根据入射光、反射光和折射光之间的位相匹配条件,利用晶体的折射率面,通过作图法,分析了光轴取向任意,寻常光和非寻常光从单轴晶体入射到各向同性介质时界面上的双反射和折射.从图上直接得到了反射光波和折射光波的位置,然后利用几何关系,得到了光波反射角和光波折射角的解析表达式.根据介质中光波与光线的关系,进一步分析了反射光线和折射光线的位置,并给出了光波与光线的离散角、光线反射角和光线折射角的解析表达式.该方法简单直观,结果具有一般性.  相似文献   

13.
受大气折射效应的影响,电波传播路径发生弯曲,传播速度小于光速,给无线电定位系统带来了一定的误差,因此需利用电波折射误差计算软件进行修正.首先通过对常用大气折射误差修正方法的分析,结合实际应用需求,选取了基于地面参数预测的电波折射修正模型.然后进行折射软件修正算法设计,给出了流程图及主要功能实现方法.最后通过模拟数据对该软件修正效果进行检验.结果表明,该软件能够准确、快速显示大气引起的电波折射误差,且能够将误差控制在1%以内.  相似文献   

14.
研究了提高水下目标定位精度的一种误差修正方法-声线折射修正方法.首先根据水下声线传播环境和声速变化规律建立了海水的折射率球面分层模型.然后基于Snell定理,利用射线描迹方法得到从声源到水下目标的声线传播轨迹,从而建立声线的真实传播距离和角度模型.经与声纳测量系统的测量参数比对,建立了水下目标定位中的声线折射误差修正模型.根据实测的海水声速剖面,利用折射率球面分层模型和声线折射修正模型进行了水下目标定位的数值计算.实验证实,采用声线折射修正方法可以有效地提高水下目标的定位精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号