首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
本实验研究了Keggin型杂多化合物Na3PW12O40/SiO2(二氧化硅负载的磷钨杂多酸钠)在紫外光的照射下催化降解有机染料甲基紫的效能。实验结果表明,催化剂用量不同,溶液的初始浓度,酸度不同则降解有机染料的效率不同。催化剂加入量的最佳值为0.09g/L;溶液的初始浓度为2mg/L时,降解的效果最佳;降解最适宜的初始酸度为pH=1。Keggin型杂多化合物Na3PW12O40/SiO2光催化降解甲基紫为一级动力学反应。  相似文献   

2.
以Fenton(Fe^3+/H2O2)光催化降解草甘膦废水,跟踪体系化学需氧量(Chemical Oxygen Demand,COD),研究了不同条件下(光源、试剂浓度和酸度等)废水光催化氧化特性及光催化反应条件.探讨了在太阳光及紫外光照射条件下Fenton试剂组分Fe^3+与H2O2不同投料比、投料量、介质酸度对光催化降解废水的影响.结果表明,利用太阳光、紫外光能显著提高废水降解速率;太阳光照射条件下,Fe^3+/H2O2为1:10投量比,pH=3时,对废水COD降解效果最佳,COD去除率达82%.  相似文献   

3.
以罗丹明B模拟染料废水并用TiO_2纳米管光催化降解,分析TiO_2纳米管的用量、pH值和光照条件对含罗丹明B废水光催化降解的影响.研究结果表明:在紫外光照射下,TiO_2纳米管的用量为0.3g/L,pH值为6时,对含罗丹明B的废水降解效果最好.  相似文献   

4.
以湿法浸渍法合成质量分数为5.0%的CuO/TiO2为催化剂, 考察不同光照条件、 体系初始pH值及催化剂用量对4种邻苯二甲酸酯(PAEs)光催化降解效率的影响, 并用电喷雾萃取电离质谱法(EESI MS)检测不同光照时间的邻苯二甲酸二丁酯(DBP)降解反应过程溶液. 结果表明: 在紫外光作用下, 当体系初始pH=6, 催化剂质量浓度为20 mg/L时, PAEs降解效果最好. 根据偏最小二乘法判别分析(PLS-DA)结果, 推测出DBP光催化降解可能的中间产物, 并在最佳反应条件下给出DBP可能的光催化降解路径.  相似文献   

5.
分别以硝酸锌,醋酸锌,氯化锌和硫酸锌为锌源采用水热法制备了纳米ZnO,通过X射线衍射仪(XRD)和透射电子显微镜(TEM)对ZnO进行了表征,结果表明:四类锌源制备的ZnO均为六方晶系的纤锌矿结构,尺寸在23.9~62.6 nm.在紫外光照射下以罗丹明B(Rhodamine B,RhB)和2,4-二氯苯酚(2,4-Dichlorophenol,2,4-DCP)的光催化降解为探针反应,研究了介质pH条件和催化剂用量等对光催化反应的影响,表明pH=6.2和催化剂用量为0.4 g.L-1条件下以硝酸锌为锌源制备的ZnO活性最好,60 min内RhB褪色完全,120 min内2,4-DCP降解率达到97%.通过总有机碳(TOC)的测定,发现6 h内RhB矿化率达到95.2%.采用辣根过氧化物酶(POD)法和苯甲酸荧光光度法分别测定了体系中H2O2和羟基自由基(.OH)的变化,表明其光催化反应机理涉及.OH历程.  相似文献   

6.
太阳能光催化降解水面石油的研究   总被引:14,自引:0,他引:14  
制备了一种负载有纳米TiO2微粒能漂浮在水面与原油接触的光活性催化剂,测定了用这种光催化剂在紫外光源照射下对水面原油的光催化降解速率。报道了直接在太阳光照射下对水面原油的光催化降解实验结果。实验表明,TiO2光催化不能有效的降解水面石油污染物,并能抑制原油在自然氧化过程中形成的有害共聚物。  相似文献   

7.
制备活性氧化铝负载铁、钴作为催化剂,并用XRD和SEM对该催化剂进行表征。考察了负载物初始浓度配比,Na2S2O8浓度,催化剂用量,苋菜红初始浓度,紫外光光照时间,pH值以及无机离子对降解苋菜红的影响。实验结果表明:当催化剂中的Fe:Co=1:2时,其降解能力最强。在苋菜红初始浓度为40 mg/L时,过硫酸钠浓度为1.5 g/L,催化剂用量为1.0 g/L,pH值为5,紫外光照射30 min的条件下,苋菜红的脱色率最高可达97.91%。且不同无机离子对反应体系有一定的抑制作用。  相似文献   

8.
以钴钨酸钾为催化剂,在紫外灯照射下,对亚甲基蓝溶液进行了光催化降解的实验研究.考察了钴钨酸钾的用量、亚甲基蓝初始浓度及溶液pH值等因素对降解效果的影响.结果表明:用钴钨酸钾催化剂降解亚甲基蓝的效果较好,降解率可以达到96%以上,重复性良好.  相似文献   

9.
PW/MCM-41光催化降解亚甲基蓝溶液研究   总被引:1,自引:1,他引:0  
制备并表征了介孔分子筛MCM-41负载杂多酸H3PW12O40(PW)光催化剂.可见光照射下对模拟染料废水亚甲基蓝(MB)溶液进行了光催化降解实验,考察了影响催化降解的主要因素.结果表明:催化剂加入量为3.0g·L-1,MB初始浓度为10mg·L-1,pH=5时,在可见光照射下,亚甲基蓝溶液降解率最高可达92.57%.  相似文献   

10.
为了研究纳米TiO2的分散及其紫外光催化活性,采用不同的分散剂、用量、pH条件及不同的超声波工作参数制备纳米TiO2分散体系.采用动态光散射法分析纳米颗粒的分散状态,采用分光光度法分析不同分散体系的纳米TiO2在紫外光照射下对亚甲基蓝降解率.采用100%FBS作为分散剂可以获得最小粒径的TiO2分散体系且有最大的光催化...  相似文献   

11.
分别以硫化钠(Na2S)和硫脲(CH3CSCH3)为硫源与醋酸锌(Zn(CH3COO)2.2 H2O)通过水热法反应制备了ZnS量子点,通过透射电子显微镜(TEM)及X-射线衍射(XRD)对ZnS进行了初步表征,结果表明:两类硫源制备的ZnS量子点均为颗粒状立方闪锌矿结构,量子尺寸分别为19.6 nm,25.1nm.在紫外光(λ≤387)照射下以有机染料罗丹明B(Rhodamine B,RhB)及无色小分子2,4-二氯苯酚(2,4-Dichlorophenol,DCP)的光催化降解为探针反应,研究了介质pH条件和光催化剂ZnS用量对光催化反应的影响,表明pH=10、光催化剂用量为50 mg条件下以Na2S为硫源制得的ZnS活性较好,能使RhB在70 min内褪色完全,呈现出ZnS量子点的量子尺寸效应.同时,此实验条件下11 h对2,4-二氯苯酚(2,4-Dichlorophenol,DCP)的深度氧化矿化率为90%.用酶催化分光光度法和苯甲酸荧光光度法分别跟踪测定了催化反应过程中产生的H2O2和.OH,表明量子点ZnS对有毒有机物的光催化氧化过程涉及H2O2和.OH的氧化历程.  相似文献   

12.
以臭氧氧化不易生物降解的聚乙烯醇(PVA)模拟废水, 考察典型杂多酸(HPA)对臭氧氧化的催化作用. 先在3种典型杂多酸中筛选出对臭氧氧化PVA具有催化效果的硅钨酸(HSiW), 考察反应时间、 臭氧质量浓度、 体系pH值、 催化剂用量和反应温度对PVA去除率的影响, 再通过正交实验确定去除PVA的最佳条件. 结果表明: 体系的pH值对PVA去除率影响最大, 催化剂用量的影响最小; HSiW催化臭氧氧化体系去除PVA的最佳条件为ρ(O3)=25 mg/L, 反应温度30 ℃, 体系pH=8.3, 催化剂用量250 mg/L, 在该条件下降解反应5 min, PVA去除率即可达98.3%; HSiW未改变臭氧氧化降解PVA的基本途径, HSiW可促进臭氧分解, 生成更多的HO·, 并可催化臭氧与PVA的直接反应.  相似文献   

13.
在室温下,以钛酸丁酯为钛源、葡萄糖为碳源,用醇解法制备了C掺杂TiO2.以活性艳红X-3B作为目标降解物,评价了不同焙烧温度、投加量和反应液初始pH值等因素对样品光催化性能的影响.利用紫外-可见漫反射(UV-Vis DRS)、X-射线粉末衍射(XRD)、热重分析(TG-DTG)、扫描电镜(SEM-EDS)等手段对样品进行理化性能表征.结果表明,C-TiO2具有典型的锐钛矿相结构,对活性艳红X-3B具有良好的可见光降解效果.在催化剂煅烧温度500℃、投加量1.5 g.L-1、pH值7~9、可见光光照2 h的条件下,对质量浓度为100 mg.L-1的活性艳红X-3B的脱色率可达70%以上.  相似文献   

14.
以铜基MOF (HKUST-1, [Cu3(BTC)2], BTC为1,3,5-苯三甲酸)为模板, 利用一步碳化法制备负载零价铜的纳米多孔碳材料NPC@Cu。以此 NPC@Cu为催化剂, 活化过一硫酸氢钾(PMS), 在常温常压下异相催化氧化处理模拟的偶氮染料废水。采用电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等技术对催化剂进行表征, 并研究反应过程中催化剂投加量、氧化剂投加量和初始pH值对降解效率的影响。实验结果表明, 在催化剂用量为0.1 g/L, PMS浓度为2.00 mmol/L, pH值为7的条件下, 反应进行45分钟后, 浓度为0.10 mmol/L的RhB降解率可达到 100%。通过自由基捕捉实验, 证明体系中存在SO4·和·OH两种自由基,表明NPC@Cu是一种性能良好的催化材料。  相似文献   

15.
以市售商品TiO2为光催化剂,以SFBlue制衣染料溶液模拟实际印染废水,研究光照时间、TiO2投加量、染料溶液浓度、pH值、温度对UV/TiO2体系降解染料废液效果的影响和宏观动力学。结果表明,UV/TiO2对SFBlue染料废液具有良好的处理效果,而且在发生光催化降解的同时还伴随着光分解反应,光催化降解反应为表观二级反应,活化能50.1kJ·mol-1,指前因子4.47×105L.mg-1.min-1;光分解反应为表观一级反应,活化能14.8kJ·mol-1,指前因子1.67min-1。UV/TiO2体系降解染料废液受到光照时间、TiO2投加量、染料溶液浓度、pH值、温度等因素的影响,TiO2最佳投加量为1.2g.L-1,染料溶液初始pH值≤3时,TiO2对SFBlue染料具有强烈吸附作用。  相似文献   

16.
以硅胶为载体,采用浸渍-焙烧法制备了TiO2光催化剂,并将其用于二氧化氯/TiO2光催化氧化降解碱性品红模拟废水.经对比实验验证了ClO2/TiO2光催化剂/UV照射对碱性品红的氧化降解作用.50 mL质量浓度为150 mg.L-1的碱性品红模拟废水,在pH值为5.0,二氧化氯质量浓度6.14 mg.L-1和10 g.L-1光催化剂条件下,紫外照射距离20 cm,紫外照射时间13 min,碱性品红的去除率可达80%,远远高于二氧化氯化学氧化处理碱性品红的去除率46%.在废水处理过程中,采用紫外可见光谱和红外光谱分析降解产物,碱性品红被氧化降解为醌和羧酸,并进一步降解为二氧化碳和水,提出了二氧化氯/TiO2光催化氧化降解碱性品红废水的反应机理.  相似文献   

17.
提出一种新型的、无需添加氧化剂处理结晶紫废水的方法.通过共沉淀晶化法制备微波催化剂MgFe_2O_4-Fe_2O_3,在微波辐照下降解结晶紫废水,考察了催化剂用量、微波功率、辐照时间对结晶紫去除率的影响.结果表明:在一定条件下,去除率随着催化剂用量的增加、微波功率的增大、微波辐照时间的延长而增加.当微波功率为800 W,辐照时间5min,催化剂用量1g/L时,处理200mg/L的结晶紫废水,去除率可达99.3%.本文还对微波催化氧化机理进行了探究,通过添加不同氧化基团清除剂的实验发现,氧化基团清除剂的添加降低了结晶紫的去除率,并提出了该反应的微观机理:微波催化剂吸收电磁波发生光电效应,产生电子和空穴对,与水等作用产生·OH,·OH再氧化降解废水中的有机物.  相似文献   

18.
Fe/HNT (Iron/Halloysite-nanotube) heterogeneous semiconductor catalysts operating effectively under visible light were developed by using FeCl3, FeSO4 and Fe(OH)3 sludge precipitated after electro-Fenton process and named as Fe/HNT-I, Fe/HNT-II and Fe/HNT-III, respectively. Chemical configuration and particle morphology of the catalysts were characterized with XRD, SEM-EDS and UV–vis DRS. Effect of the developed Fe/HNT photocatalysts was investigated for the degradation of Reactive Orange 16 (RO16) textile dye under visible light. The photocatalytic decolorization of RO16 was 95.6%, 99.3% and 96.6%, respectively. It was found that the photocatalytic performance of Fe/HNT-III catalyst under visible light was effective compared to Fe/HNT-I and Fe/HNT-II. The iron ratio in the catalyst's structure (Fe:HNT ratio 0.25, 0.5 and 0.75 (w/w)) and pH value (4, 7 and 9) in production phase were also changed to investigate the photocatalytic effect of Fe/HNT-III. An Fe:HNT ratio of 0.25 and a pH of 4 were determined as the optimum conditions for catalyst production. Optimum H2O2 dosage value was also investigated for photocatalytic oxidation process and determined to be 10 ?mM. Finally, the optimum conditions were further used for the degradation of Terbinafine hydrochloride (TerHCl) active drug and the treatment of wastewater from the textile and pharmaceutical industries.  相似文献   

19.
A novel composite electrode was constructed by pressing together Co3O4 and graphite and it was used as the cathode in an electro-Fenton-like (EFL) system. The poor electron transport characteristic of Co3O4 was overcome by incorporating graphite. In situ electro-catalytic generation of hydroxyl radicals (·OH) occurred at high current efficiencies from pH 2-10, extending the traditional Fenton reaction pH range. Cyclic voltammetry and AC impedance spectrometry were used to characterize the composite electrode. The ability of the EFL system to degrade organic compounds was investigated using sulforhodamine B (SRB) and 2,4-dichlorophenol (2,4-DCP) as probes. Decoloration of SRB (1.0×10-5 mol/L) was complete (100%) in 150 min and SRB was effectively degraded from pH 2-10. The decomposition of SRB was studied using Fourier transform infrared spectroscopy (FT-IR) and total organic carbon (TOC) analysis and results indicated that the final degradation products were carbon dioxide, carboxylic acids and amines. The EFL system also decomposed 2,4-DCP and the degradation was 98.6% in 240 min. Electro-catalytic degradation of SRB occurs by a ·OH mechanism. After 5 times reused, the degradation rate of SRB did not significantly slow down. The electrode shows excellent potential for use in advanced oxidation processes (AOPs) used to treat persistent organic pollutants (POPs) in wastewater.  相似文献   

20.
合成一系列杂多酸(盐)并采用红外光谱对其进行表征,研究它们对苯甲醇氧化合成苯甲醛反应的催化性能.并以H3PW1 2O40为催化剂,分别考察溶剂类型、反应时间、反应温度、催化剂用量和H2O2用量对该反应的影响,并且初步探讨该反应的反应机理.实验结果表明:5种杂多酸(盐)均具有Keggin型结构,以水为溶剂时,5种杂多酸(盐)均具有催化活性,其中H3PW12O40催化活性最高.在催化剂用量0.04mmol、w(H2O2)=30%的H2O2用量0.015mol、反应时间3.5h、反应温度90℃、溶剂水用量10mL的优化反应条件下,苯甲醇的转化率为95.59%,苯甲醛的收率可达91.62%.由此可知,H3PW12O40/H2O2/H2O体系是环境友好的高效催化体系,具有工业化应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号