首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

2.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

3.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

4.
K Saizawa  J Rojo  C A Janeway 《Nature》1987,328(6127):260-263
CD4 is a molecule expressed on the surface of T lymphocytes which recognize foreign protein antigens in the context of class II major histocompatibility complex (MHC) molecules. Recognition of antigen:class II MHC complexes by CD4+ T cells can be inhibited by anti-CD4 (ref. 3). Nevertheless, specific recognition of the antigen:Ia complex is clearly a function of the T-cell receptor, which is composed of CD3 and the variable polypeptides alpha and beta. Thus, it has been proposed that CD4 serves an accessory function in the interaction of CD4+ T cells and Ia-bearing antigen-presenting cells by binding to non-polymorphic portions of class II MHC molecules and stabilizing the cell interaction. Based on our observation that anti-CD4 could inhibit activation of a cloned line of CD4+ T cells by antibodies directed at a particular epitope on the variable region of the T-cell receptor, we have recently proposed that CD4 is actually part of the T-cell antigen recognition complex, physically associated with CD3:alpha:beta. But numerous studies showing that CD3 and CD4 are not stably associated on the T-cell surface would appear to contradict this model. Here we show that anti-T-cell-receptor antibodies can co-modulate expression of the T-cell receptor and CD4, and that the monovalent Fab fragment of such an anti-T-cell-receptor antibody can, in conjunction with bivalent anti-CD4 antibody, generate an activating signal for the T cell. These findings provide further evidence for a physical association of the T-cell receptor complex and CD4.  相似文献   

5.
Interaction between CD4 and class II MHC molecules mediates cell adhesion   总被引:89,自引:0,他引:89  
C Doyle  J L Strominger 《Nature》1987,330(6145):256-259
The CD4 glycoprotein is expressed on T-helper and cytotoxic lymphocytes which are restricted to class II major histocompatibility complex (MHC) antigens on target cells. Antibody inhibition studies imply that CD4 acts to increase the avidity of effector-target cell interactions. These observations have led to the speculation that CD4 binds to a monomorphic class II antigen determinant, thereby augmenting low affinity T-cell receptor-antigen interactions. However, no direct evidence has been presented indicating that CD4 and class II molecules interact. To address this issue, we have used a vector derived from simian virus 40 (SV40) to express a complementary DNA (cDNA) encoding the human CD4 glycoprotein. When CV1 cells expressing large amounts of the CD4 protein at the cell surface are incubated with human B cells bearing MHC-encoded class II molecules, they are bound tightly to the infected monolayer, whereas mutant B cells which lack class II molecules fail to bind. Furthermore, the binding reaction is specifically inhibited by anti-class II and anti-CD4 antibodies. Thus, the CD4 protein, even in the absence of T-cell receptor-antigen interactions, can interact directly with class II antigens to function as a cell surface adhesion molecule.  相似文献   

6.
The CD4 and CD8 molecules are transmembrane glycoproteins expressed by functionally distinct subsets of mature T cells. CD4+ and CD8+ T cells recognize antigens on major histocompatibility complex (MHC) class II-bearing and class I-bearing target cells respectively. The ability of monoclonal antibodies against CD4 and CD8 to block antigen recognition by T cells, as well as cell-cell adhesion assays, indicate that CD4 and CD8 bind to nonpolymorphic determinants of class II or class I MHC. Here we demonstrate that soluble recombinant HLA-DR4 molecules from insect cells and HLA-DR-derived peptides bind to immobilized recombinant soluble CD4. CD4 binds recombinant soluble DR4 heterodimers, as well as the soluble DR4-beta chain alone. Furthermore, two out of twelve DR4-beta peptides could interact specifically with CD4. These findings show that CD4 interacts with a region of MHC class II molecules analogous to a previously identified loop in class I MHC proteins that binds CD8 (refs 8, 9).  相似文献   

7.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

8.
R H Seong  J W Chamberlain  J R Parnes 《Nature》1992,356(6371):718-720
Mature T cells express either CD4 or CD8 on their surface. Most helper T cells express CD4, which binds to class II major histocompatibility complex (MHC) proteins, and most cytotoxic T cells express CD8, which binds to class I MHC proteins. In the thymus, mature CD4+CD8- and CD4-CD8+ T cells expressing alpha beta T-cell antigen receptors (TCR) develop from immature thymocytes through CD4+CD8+ alpha beta TCR+ intermediates. Experiments using mice transgenic for alpha beta TCR suggest that the specificity of the TCR determines the CD4/CD8 phenotype of mature T cells. These results, however, do not indicate how a T cell differentiates into the CD4 or CD8 lineage. Here we show that the CD4 transmembrane region and/or cytoplasmic tail mediates the delivery of a specific signal that directs differentiation of T cells to a CD4 lineage. We generated transgenic mice expressing a hybrid molecule composed of the CD8 alpha extracellular domains linked to the CD4 transmembrane region and cytoplasmic tail. We predicted that this hybrid molecule would bind to class I MHC proteins through the extracellular domains but deliver the intracellular signals characteristic of CD4. By crossing our transgenic mice with mice expressing a transgenic alpha beta TCR specific for a particular antigen plus class I MHC protein, we were able to express the hybrid molecule in developing thymocytes expressing the class I MHC-restricted TCR. Our results show that the signal transduced by the hybrid molecule results in the differentiation of immature thymocytes expressing a class I-restricted TCR into mature T cells expressing CD4.  相似文献   

9.
The T-cell repertoire found in the periphery is thought to be shaped by two developmental events in the thymus that involve the antigen receptors of T lymphocytes. First, interactions between T cells and major histocompatibility complex (MHC) molecules select a T-cell repertoire skewed towards recognition of antigens in the context of self-MHC molecules. In addition, T cells that react strongly to self-MHC molecules are eliminated by a process called self-tolerance. We have recently described transgenic mice expressing the alpha beta T-cell receptor from the cytotoxic T lymphocyte 2C (ref. 11). The clone 2C was derived from a BALB.B (H-2b) anti-BALB/c (H-2d) mixed lymphocyte culture and is specific for the Ld class I MHC antigen. In transgenic H-2b mice, a large fraction of T cells in the periphery expressed the 2C T-cell receptor. These T cells were predominantly CD4-CD8+ and were able to specifically lyse target cells bearing Ld. We now report that in the periphery of transgenic mice expressing Ld, functional T cells bearing the 2C T-cell receptor were deleted. This elimination of autoreactive T cells appears to take place at or before the CD4+CD8+ stage in thymocyte development. In addition, we report that in H-2s mice, a non-autoreactive target haplotype, large numbers of CD8+ T cells bearing the 2C T-cell receptor were not found, providing strong evidence for the positive selection of the 2C T-cell receptor specificity by H-2b molecules.  相似文献   

10.
Antigens presented to CD4+ T cells derive primarily from exogenous proteins that are processed into peptides capable of binding to class II major histocompatibility complex (MHC) molecules in an endocytic compartment. In contrast, antigens presented to CD8+ T cells derive mostly from proteins processed in the cytosol, and peptide loading onto class I MHC molecules in an early exocytic compartment is dependent on a transporter for antigen presentation encoded in the class II MHC region. Endogenous cytosolic antigen can also be presented by class II molecules. Here we show that, unlike class I-restricted recognition of antigen, HLA-DR1-restricted recognition of cytosolic antigen occurs in mutant cells without a transporter for antigen presentation. In contrast, DR1-restricted recognition of a short cytosolic peptide is dependent on such a transporter. Thus helper T-cell epitopes can be generated from cytosolic antigens by several mechanisms, one of which is distinct from the classical class I pathway.  相似文献   

11.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

12.
Yasutomo K  Doyle C  Miele L  Fuchs C  Germain RN 《Nature》2000,404(6777):506-510
Signals elicited by binding of the T-cell antigen receptor and the CD4/CD8 co-receptor to major histocompatibility complex (MHC) molecules control the generation of CD4+ (helper) or CD8+ (cytotoxic) T cells from thymic precursors that initially express both co-receptor proteins. These precursors have unique, clonally distributed T-cell receptors with unpredictable specificity for the self-MHC molecules involved in this differentiation process. However, the mature T cells that emerge express only the CD4 (MHC class II-binding) or CD8 (MHC class I-binding) co-receptor that complements the MHC class-specificity of the T-cell receptor. How this matching of co-receptor-defined lineage and T-cell-receptor specificity is achieved remains unknown, as does whether signalling by the T-cell receptors, co-receptors and/or general cell-fate regulators such as Notch-1 contributes to initial lineage choice, to subsequent differentiation processes or to both. Here we show that the CD4 versus CD8 lineage fate of immature thymocytes is controlled by the co-receptor-influenced duration of initial T-cell receptor-dependent signalling. Notch-1 does not appear to be essential for this fate determination, but it is selectively required for CD8+ T-cell maturation after commitment directed by T-cell receptors. This indicates that the signals constraining CD4 versus CD8 lineage decisions are distinct from those that support subsequent differentiation events such as silencing of co-receptor loci.  相似文献   

13.
Lymphocytes are most reliably subdivided on the basis of their receptors for antigen at the cell surface. Three subtypes of lymphocytes are well defined: B cells that bear surface immunoglobulin and make antibody, CD4+T cells with CD3 alpha beta receptors specific for antigen associated with class II major histocompatibility complex molecules, and CD8+T cells with CD3 alpha beta receptors specific for antigen associated with class I MHC molecules. These T cells are responsible for known forms of cell-mediated immunity. The discovery of a third rearranging T-cell specific gene called gamma (refs 1 and 2) has revealed the presence of a new class of T cells bearing a new receptor type, CD3 gamma delta (refs 3-7). To date, neither the function nor the specificity of cells bearing this receptor has been determined. Because gamma delta T cells are the main lymphocyte of epidermis, it was proposed that such cells could be important in surveillance of all epithelia. We have isolated intraepithelial lymphocytes from murine small intestine, and shown that they predominantly or exclusively express CD3 gamma delta receptors. Unlike the epidermal lymphocytes, these cells also express CD8, and they use a different V lambda gene to form their receptor. This strongly suggests that gamma delta T cells home in a very specific manner to epithelia, where they presumably mediate their function.  相似文献   

14.
A M O'Rourke  J Rogers  M F Mescher 《Nature》1990,346(6280):187-189
The CD8 glycoprotein of T cells bind nonpolymorphic regions of class I major histocompatibility complex proteins on target cells and these interactions promote antigen recognition and signalling by the T-cell receptor. Studies using artificial membranes indicated that effective CD8/class I interaction is critical for response by alloantigen-specific cytotoxic T lymphocytes when class I protein is the only ligand on the antigen-bearing surface. But significant CD8-mediated binding of cytotoxic T lymphocytes to non-antigenic class I protein could not be detected in the absence of the alloantigen. These apparently contradictory findings indicate that CD8 binding to class I protein might be activated through the T-cell receptor and the results reported here demonstrate that this is the case. Treatment of cytotoxic T lymphocytes with soluble anti-T-cell receptor antibody activates adhesion of the cytotoxic T lymphocytes to class I, but not class II proteins. The specificity of this binding implies that it is mediated by CD8 and blocking by anti-CD8 antibodies confirmed this. Furthermore, binding of CD8 to class I protein resulted in generation of an additional signal(s) necessary to initiate response at low T-cell receptor occupancy levels.  相似文献   

15.
D Vidovi?  M Rogli?  K McKune  S Guerder  C MacKay  Z Dembi? 《Nature》1989,340(6235):646-650
Distinct T-lymphocyte subsets recognize antigens in conjunction with different classes of major histocompatibility complex (MHC) glycoproteins using the T-cell receptor (TCR), a disulphide-linked heterodimer associated with the CD3 complex on the cell surface. In general, class I and class II MHC products provide a context for the recognition of foreign antigens by CD8+ and CD4+ T cells, respectively. This recognition seems to be largely dependent on alpha beta TCR heterodimers, whereas the function of the second gamma delta TCR, present on a minor subpopulation of cells, is still unknown. In the mouse, the existence of six cell-surface MHC class I products (K, D, L, Qa-1, Qa-2 and Tla) has been firmly established by serological, biochemical and genetic evidence. So far, only the most polymorphic of them, K, D and L ('classical' class I) have been reported as restriction elements for T-cell recognition of foreign antigens. The function of the relatively invariant Qa and Tla molecules remains unknown. We have made a T-helper cell hybridoma clone (DGT3) that recognizes synthetic copolymer poly(Glu50Tyr50) in the context of Qa-1 cell surface product, and has a CD4-CD8- phenotype. Our studies indicate that DGT3 cells express the gamma delta TCR on the cell surface, implicating its role in Qa-1-restricted antigen recognition. This is the first evidence that T cells can recognize foreign antigen in association with self Qa product, confirming that Qa molecules not only topologically, but also functionally, belong to the MHC.  相似文献   

16.
Human cluster-of-differentiation 1 (CD1) is a family of cell surface glycoproteins of unknown function expressed on immature thymocytes, epidermal Langerhans cells and a subset of B lymphocytes. Three homologous proteins, CD1a, b and c, have been defined serologically, and the CD1 gene locus on human chromosome 1 contains five potential CD1 genes. Analysis of the predicted amino-acid sequences of CD1 molecules reveals a low but significant level of homology to major histocompatibility complex (MHC) class I and class II molecules, and, like MHC class I molecules, CD1 molecules are associated non-covalently with beta 2-microglobulin. These structural similarities to known antigen-presenting molecules, together with the expression of CD1 on cells capable of antigen presentation, suggest a role for CD1 molecules in antigen recognition by T cells. Here we demonstrate the specific recognition of CD1a by a CD4-CD8- alpha beta T-cell receptor (TCR) expressing cytolytic T lymphocyte (CTL) line and the specific recognition of CD1c by a CD4-CD8- gamma delta TCR CTL line. The interaction of CD1-specific CTLs with CD1+ target cells appeared to involve the CD3-TCR complex, and did not show evidence of MHC restriction. These results suggest that for a subset of T cells, CD1 molecules serve a function analogous to that of MHC class I and II molecules.  相似文献   

17.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

18.
In addition to expressing clonally distributed antigen-specific and major histocompatibility complex (MHC)-restricted receptors, T cells also express non-clonally distributed surface molecules that are involved in T-cell function. Among the most intriguing of the latter are L3T4 and Lyt 2, which are expressed on individual T lymphocytes in striking, though not absolute, concordance with their restriction by either class II or class I MHC determinants, and which are thought to contribute to the overall avidity of T-cell interactions by binding to monomorphic determinants on class II and class I MHC molecules, respectively. To examine the ability of T cells to recognize a single class II domain in the absence of the remainder of the Ia molecule, as well as to evaluate the structural basis for the putative interaction of L3T4 with Ia, a recombinant class II/class I murine MHC gene was constructed and introduced into mouse L cells. Here we demonstrate that a subset of class II allospecific cytotoxic T lymphocytes (CTL) can specifically recognize and lyse L-cell transfectants expressing an isolated polymorphic A beta 1 domain, and that anti-L3T4 antibody can block such killing, a result inconsistent with the highly conserved membrane-proximal domains of Ia acting as unique target sites for L3T4 binding.  相似文献   

19.
N Shinohara  M Watanabe  D H Sachs  N Hozumi 《Nature》1988,336(6198):481-484
Cytolytic T lymphocytes (CTLs) are generally thought to recognize cellular antigens presented by class I MHC molecules. A number of studies, however, have revealed responses of considerable magnitude involving both CD8+ and CD4+ CTLs with class II restriction, suggesting that class II-restricted CTLs recognizing exogeneous protein antigens may exist. As class II antigens are normally expressed on limited types of cells such as B cells and macrophages, such CTLs might be expected to exert a suppressive effect on antibody responses. Here we report that stimulation of mouse lymphocytes with a soluble antigen induced CD8+ and CD4+ CTLs specific for the antigen with class II restriction. The specific lysis was far more efficient when target B cells specifically recognized the antigen than when they did not, indicating that the primary targets for these CTLs are probably B cells expressing immunoglobulin receptors reactive for the same antigen molecule. These results suggest that the natural occurrence of such CTLs during immune responses may explain antigen-specific suppression on antibody responses by T cells.  相似文献   

20.
Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells   总被引:44,自引:0,他引:44  
Mice homozygous for a beta 2-microglobulin gene disruption do not express any detectable beta 2-m protein. They express little if any functional major histocompatibility complex (MHC) class I antigen on the cell surface yet are fertile and apparently healthy. They show a normal distribution of gamma delta, CD4+8+ and CD4+8- T cells, but have no mature CD4-8+ T cells and are defective in CD4-8+ T cell-mediated cytotoxicity. Our results strongly support earlier evidence that MHC class I molecules are crucial for positive selection of T cell antigen receptor alpha beta+ CD4-8+ T cells in the thymus and call into question the non-immune functions that have been ascribed to MHC class I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号