首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
M Prentki  C B Wollheim 《Experientia》1984,40(10):1052-1060
The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of 45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

2.
Pancreatic beta cell damage caused by pro-inflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα) is a key event in the pathogenesis of type 1 diabetes. The suppressor of cytokine signaling-1 (SOCS-1) blocks IFNγ-induced signaling and prevents diabetes in the non-obese diabetic mouse. Here, we investigated if SOCS-1 overexpression in primary beta cells provides protection from cytokine-induced islet cell dysfunction and death. We demonstrate that SOCS-1 does not prevent increase in NO production and decrease in glucose-stimulated insulin secretion in the presence of IL-1β, IFNγ, TNFα. However, it decreases the activation of caspase-3, -8 and -9, and thereby, promotes a robust protection from cytokine-induced beta cell death. Our data suggest that SOCS-1 overexpression may not be sufficient in preventing all the biological activities of IFNγ in beta cells. In summary, we show that interference with IFNγ signal transduction pathways by SOCS-1 inhibits cytokine-stimulated pancreatic beta cell death.  相似文献   

3.
This review discusses multiple ways in which the endoplasmic reticulum participates in and is influenced by signal transduction pathways. The endoplasmic reticulum provides a Ca2+ store that can be mobilized either by calcium-induced calcium release or by the diffusible messenger inositol 1,4,5-trisphosphate. Depletion of endoplasmic reticulum Ca2+ stores provides a signal that activates surface membrane Ca2+ channels, a process known as capacitative calcium entry. Depletion of endoplasmic reticulum stores can also signal long-term cellular responses such as gene expression and programmed cell death or apoptosis. In addition to serving as a source of cellular signals, the endoplasmic reticulum is also functionally and structurally modified by the Ca2+ and protein kinase C pathways. Elevated cytoplasmic Ca2+ causes a rearrangement and fragmentation of endoplasmic reticulum membranes. Protein kinase C activation reduces the storage capacity of the endoplasmic reticulum Ca2+ pool. In some cell types, protein kinase C inhibits capacitative calcium entry. Protein kinase C activation also protects the endoplasmic reticulum from the structural effects of high cytoplasmic Ca2+. The emerging view is one of a complex network of pathways through which the endoplasmic reticulum and the Ca2+ and protein kinase C signaling pathways interact at various levels regulating cellular structure and function.  相似文献   

4.
Summary Electron probe microanalysis (EPMA) has been used to study the subcellular distribution of Ca, Na, K. Cl, and Mg in smooth muscle. The EPMA results indicate that the sarcoplasmic reticulum (SR) is the majorintracellular source and sink of activator Ca: norepinephrine decreases the Ca content of the junctional SR in portal vein smooth muscle. Mitochondria do not play a significant role in regulating cytoplasmic free Ca2+, but mitochondrial Ca content can be altered to a degree compatible with suggestions that fluctuations in matrix Ca contribute to the control of mitochondrial metabolism. The rise intotal cytoplasmic Ca during a maintained, maximal contraction is very much greater than the rise in free Ca2+, and is probably in excess of the known binding sites available on calmodulin and myosin. Cell Ca is not increased in normal cells that are Na-loaded. The non-Donnan distribution of Cl is not due to compartmentalization, but reflects high cytoplasmic Cl. Na-loading of smooth muscle in K-free solutions is temperature dependent, and may exhibit cellular heterogeneity undetected by conventional techniques. The total cell Mg is equivalent to approximately 12 mM, and less than 50% of it can be accounted for by binding to ATP and to actin. Mitochondrial monovalent cations in smooth muscle are relatively rapidly exchangeable.  相似文献   

5.
Nuclear calcium signalling   总被引:9,自引:0,他引:9  
The topic of nuclear Ca2+ signalling is beset by discrepant observations of substantial nuclear/cytoplasmic gradients. The reasons why some labs have recorded such gradients, whilst other workers see equilibration of Ca2+(cyt) and Ca2+(nuc) using the same cells and techniques, is unexplained. Furthermore, how such gradients could arise across the NE that possesses many highly-conductive NPCs is a mystery. Although nuclei may have the capacity to be autonomous signalling entities, with functional Ca2+ release channels and an inositide cycle, the balance of evidence suggests that Ca2+ release on the inner NE does not occur during physiological stimulation. Our work suggests that elementary Ca2+ release events originating in the cytoplasm can give rise to Ca2+ signals without causing elevation of the bulk cytoplasm. Clearly, the many Ca2+ signalling mechanisms that may impinge on Ca2+(nuc) will remain a topic of controversy and debate for some time.  相似文献   

6.
P Thams 《Experientia》1991,47(11-12):1201-1208
The role of protein kinase C and Ca2+ in glucose-induced sensitization/desensitization of insulin secretion was studied. A 22-24 h exposure of mouse pancreatic islets to glucose (16.7 mmol/l) in TCM 199 culture medium, with 0.26 mmol/l or 1.26 mmol/l Ca2+, reduced total islet protein kinase C activity to approx. 85% and 60% of control values, respectively. At 0.26 mmol/l Ca2+ in TCM 199 medium, exposure to glucose (16.7 mmol/l) led to a potentiation of both phase 1 and phase 2 of glucose-induced insulin secretion, and caused a shift in the dose-response curve with 10 mmol/l and 16.7 mmol/l glucose exhibiting equipotent effects in stimulation of insulin secretion. In glucose-sensitized islets, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (0.16 mumol/l) did not further potentiate induction of secretion by 10 mmol/l or 16.7 mmol/l glucose. At 3.3 mmol/l glucose, however, phorbol ester-induced secretion was augmented, and was characterized by a faster onset of secretion in glucose-sensitized islets relative to control islets. In contrast, a partial reduction in arachidonic acid (100 mumol/l)-induced insulin release was observed in glucose-sensitized islets in the absence of extracellular Ca2+. Increasing the Ca2+ concentration to 1.26 mmol/l in TCM 199 during the 22-24 h exposure to glucose (16.7 mmol/l) led to inhibition of phase 1 and abolition of phase 2 of glucose (10 mmol/l, 16.7 mmol/l)-induced insulin secretion. In addition, this treatment abolished phorbol ester-induced and arachidonic acid-induced insulin secretion at 3.3 mmol/l glucose. Altogether, these data suggest that sensitization of insulin secretion is caused by a preferential down-regulation of the inhibitory effects of protein kinase C, leading to an increased first phase, and an increased coupling of glucose to the stimulatory effects of protein kinase C during the second phase of glucose-induced insulin secretion. Desensitization of insulin secretion appears to be a consequence of sustained Ca2+ influx, inducing extensive down-regulation of protein kinase C and also causing deleterious effects on islet cell function in protein kinase C-deprived islets.  相似文献   

7.
The role of Sam68, an RNA binding protein and putative substrate of the insulin receptor (IR) in insulin signaling was studied using CHO wild type (WT) cells, CHO cells overexpressing IR, and rat white adipocytes as a physiological system. In CHO-IR cells and adipocytes, Sam68 was tyrosine phosphorylated in response to insulin, and then associated with p85 phosphatidylinositol-3 kinase along with IRS-1. Sam68 was localized mainly in the nucleus of CHO-WT, and both in the nucleus and cytoplasm of CHO-IR cells, but only in the cytoplasm of rat white adipocytes. Insulin stimulation for 16 h enhanced the expression of Sam68 in rat adipocytes and CHO-IR cells. Moreover, CHO-IR cells expressed more Sam68 than CHO-WT, suggesting that overexpression of the IR is enough to induce the expression of Sam68. In summary, these results demonstrate that Sam68 works as a cytoplasmic docking protein which is recruited by IR signaling and whose expression is induced by insulin stimulation, suggesting a putative role for Sam68 in insulin signal transduction.  相似文献   

8.
Hexose transport in Swiss 3T3 cells was increased by treatment with dichloroacetic acid as well as by treatment with insulin. Neither extra- nor intracellular Ca2+ was found to be involved in their stimulatory action. On the other hand, the removal of intracellular Mg2+ resulted in a loss of the stimulation. These results suggest that dichloroacetic acid stimulates the hexose transport in Mg2+-dependent manner, similar to that of insulin.  相似文献   

9.
Summary The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

10.
Ca2+ is a uniquely important messenger that penetrates into cells through gated channels to transmit signals to a large number of enzymes. The evolutionary choice of Ca2+ was dictated by its unusual chemical properties, which permit its reversible complexation by specific proteins in the presence of much larger amounts of other potentially competing cations. The decoding of the Ca2+ signal consists in two conformational changes of the complexing proteins, of which calmodulin is the most important. The first occurs when Ca2+ is bound, the second (a collapse of the elongated protein) when interaction with the targeted enzymes occurs. Soluble proteins such as calmodulin contribute to the buffering of cell Ca2+, but membrane intrinsic transporting proteins are more important. Ca2+ is transported across the plasma membrane (channel, a pump, a Na+/Ca2+ exchanger) and across the membrane of the organelles. The endoplasmic reticulum is the most dynamic store: it accumulates Ca2+ by a pump, and releases it via channels gated by either inositol 1,4,5-trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPr). The mitochondrion is more sluggish, but it is closed-connected with the reticulum, and senses microdomains of high Ca2+ close to IP3 or cADPr release channels. The regulation of Ca2+ in the nucleus, where important Ca(2+)-sensitive processes reside, is a debated issue. Finally, if the control of cellular Ca2+ homeostasis somehow fails (excess penetration), mitochondria 'buy time' by precipitating inside Ca2+ and phosphate. If injury persists, Ca2(+)-death eventually ensues.  相似文献   

11.
Slow oscillations of cytosolic calcium ion concentration – – typically originate from release by intracellular stores, but in some cell types can be triggered and sustained by Ca2+ influx as well. In this study we simultaneously monitored changes in and in the electrical activity of the cell membrane by combining indo-1 and patch-clamp measurements in single rat chromaffin cells. By this approach we observed a novel type of spontaneous oscillations, much faster than those previously described in these cells. These oscillations are triggered and sustained by complex electrical activity (slow action potentials and spike bursts), require Ca2+ influx and do not involve release from intracellular stores. The possible physiological implications of this new pathway of intracellular signalling are discussed.Received 30 July 2004; received after revision 14 October 2004; accepted 1 November 2004  相似文献   

12.
A protein (32,000 dalton) has been purified from M2FS cells derived from the murine plasmocytoma MOPC 173. Like tropomyosin, this protein when added with Ca++ to EDTA-treated plasma membranes prepared from the same cell, induced a drastic increase in the Na+/K+ atpase resistance to ouabain.  相似文献   

13.
Electron probe microanalysis (EPMA) has been used to study the subcellular distribution of Ca, Na, K, Cl, and Mg in smooth muscle. The EPMA results indicate that the sarcoplasmic reticulum (SR) is the major intracellular source and sink of activator Ca: norepinephrine decreases the Ca content of the junctional SR in portal vein smooth muscle. Mitochondria do not play a significant role in regulating cytoplasmic free Ca2+, but mitochondrial Ca content can be altered to a degree compatible with suggestions that fluctuations in matrix Ca contribute to the control of mitochondrial metabolism. The rise in total cytoplasmic Ca during a maintained, maximal contraction is very much greater than the rise in free Ca2+, and is probably in excess of the known binding sites available on calmodulin and myosin. Cell Ca is not increased in normal cells that are Na-loaded. The non-Donnan distribution of Cl is not due to compartmentalization, but reflects high cytoplasmic Cl. Na-loading of smooth muscle in K-free solutions is temperature dependent, and may exhibit cellular heterogeneity undetected by conventional techniques. The total cell Mg is equivalent to approximately 12 mM, and less than 50% of it can be accounted for by binding to ATP and to actin. Mitochondrial monovalent cations in smooth muscle are relatively rapidly exchangeable.  相似文献   

14.
The possibility that intracellular Ca2+, which mediates neurotransmitter release, regulation of membrane permeability, microtubule polymerization and axonal transport, is influenced by gonadal steroids via a Na-Ca exchange mechanism was examined. The resting Ca2+ uptake into synaptosomes was measured using crude synaptosomal pellets (P2 fraction), isolated from the brain stem, mesencephalic reticular formation (MRF), nucleus caudatus (NC) and the hippocampus of intact, long-term ovariectomized (OVX) and OVX plus progesterone (P) or estradiol-17 beta benzoate (EB) treated adult female rats. Irrespective of the brain structure investigated, the uptake was 1) markedly increased in synaptosomes from OVX animals in comparison to intact controls, and 2) reduced to near control values in synaptosomes from OVX rats treated s.c. with a single dose of 2 mg P or 5 micrograms EB. Since Ca2+ influx into synaptosomes was shown earlier to depend on external sodium concentration, which was the same in all experiments described in this work, the results obtained indicate that ovarian steroids modulate basal synaptic activity in the rat brain by suppressing Na-dependent Ca2+ efflux from the nerve cell.  相似文献   

15.
S Weidmann 《Experientia》1987,43(2):133-146
The time-course of the cardiac action potential can be accounted for in terms of ionic currents crossing the cell membranes. Depolarizing current is carried by Na+ or Ca2+ entering the cells, repolarizing current by K+ leaving the cells. Membrane permeability for the passive movement of these ions is thought to be voltage-dependent as well as time-dependent. Net transfer of charge may also result from active transport, 2 Na+ out against 1 K+ in; or coupled exchange, 3 or 4 Na+ in against 1 Ca2+ out. This review follows the path by which present-day knowledge has been reached. It also gives a few examples to illustrate that electrophysiology has provided concepts useful to clinical cardiology.  相似文献   

16.
Summary Two off-type plants, morphologically distinguishable from each other and from their respective sister euploid, were isolated in the M3 generation of pea interchange heterozygotes. Pollen sterility was very high, ranging from 63.0 to 90.0%. Cytologically one of them was tetrasomic (2n+2=16) and the other one was quadruple trisomic (2n+1+1+1+1=18). In the tetrasomic plant 1IV+6II was the most frequent (46.7%) chromosome configuration, while cells with 4III+3II were predominant (40.0% cells) in the quadruple trisomic plant.Financial assistance of C.S.I.R., New Delhi, India is acknowledged.  相似文献   

17.
Insulin secretion is finely tuned to the requirements of tissues by tight coupling to prevailing blood glucose levels. The normal regulation of insulin secretion is coupled to glucose metabolism in the pancreatic B cell, a major but not exclusive signal for secretion being closure of K+ATP (adenosine triphosphate)-dependent channels in the cell membrane through an increase in cytosolic ATP/adenosine diphosphate. Insulin secretion in type 2 diabetes is abnormal in several respects due to genetic causes but also due to the metabolic environment of the pancreatic B cells. This environment may be particularly important for the deterioration of insulin secretion which occurs with increasing duration of diabetes. Factors in the environment with potential importance include overstimulation, a negative effect of hyperglycemia per se (‘glucotoxicity’) as well as adverse effects of elevated fatty acids (‘lipotoxicity’). Elucidating the mechanisms behind these factors as well as their clinical importance will pave the way for treatment which could preserve B-cell function in type 2 diabetic patients. Received 4 October 1999; received after revision 1 November 1999; accepted 3 December 1999  相似文献   

18.
C J Duncan 《Experientia》1990,46(1):41-48
The O2- and Ca2(+)-paradoxes have a number of features in common and it is suggested that release of cytosolic proteins in both paradoxes is initiated by the activation of a sarcolemma NAD(P)H dehydrogenase which can generate a transmembrane flow of H+ and e- and also oxygen radicals or redox cycling which damage ion channels and membrane proteins (phase I). Entry of Ca2+ through the damaged ion channels then exacerbates the damage by further activating this system, either directly or indirectly, and the redox cycling and/or oxygen radicals cause further damage to integral and cytoskeletal proteins of the sarcolemma resulting in microdamage to the integrity of the membrane (phase II) and the consequent release or exocytosis of cytoplasmic proteins and, under specialised conditions, the blebbing of the sarcolemma. The system may be primed either by removal of extracellular Ca2+ or by raising [Ca2+]i by a variety of measures, these two actions being synergistic. The system is initially activated in the Ca2(+)-paradox by the membrane perturbation associated with removal of extracellular Ca2+; prolonged anoxia in the metabolically active cardiac muscle causes a depletion of the ATP supply, particularly in the absence of glucose, and hence a rise in [Ca2+]i in phase I of the oxygen paradox with the consequent activation of the NAD(P)H oxidase at the sarcolemma. Oxygen radicals are probably generated in both paradoxes and may have a partial role in the genesis of damage, but are not essential in the Ca2(+)-paradox which continues under anoxia. Massive entry of Ca2+ also activates an intracellularly localised dehydrogenase (probably at the SR) which produces myofilament damage by redox cycling.  相似文献   

19.
Mitochondrial metabolism is crucial for the coupling of glucose recognition to the exocytosis of the insulin granules. This is illustrated by in vitro and in vivo observations discussed in the present review. Mitochondria generate ATP, which is the main coupling messenger in insulin secretion. However, the subsequent Ca2+ signal in the cytosol is necessary but not sufficient for full development of sustained insulin secretion. Hence, mitochondria generate ATP and other coupling factors serving as fuel sensors for the control of the exocytotic process. Numerous studies have sought to identify the factors that mediate the amplifying pathway over the Ca2+ signal in glucose-stimulated insulin secretion. Predominantly, these factors are nucleotides (GTP, ATP, cAMP, NADPH), although metabolites have also been proposed, such as long-chain acyl-CoA derivatives and glutamate. Hence, the classical neurotransmitter glutamate receives a novel role, that of an intracellular messenger or co-factor in insulin secretion. This scenario further highlights the importance of glutamate dehydrogenase, a mitochondrial enzyme well recognized to play a key role in the control of insulin secretion. Therefore, additional putative messengers of mitochondrial origin are likely to participate in insulin secretion.  相似文献   

20.
Sodium/calcium exchange in ventricular muscle   总被引:1,自引:0,他引:1  
J A McGuigan  L A Blatter 《Experientia》1987,43(11-12):1140-1145
Ventricular cells possess two Ca extrusion mechanisms, a Na/Ca exchange system and a Ca pump. Reversing the exchanger by extracellular Na removal causes [Na]i to decrease, and the cells take up mmolar quantities of calcium. Since [Ca]i shows only a marginal increase the calcium load must be buffered. The capacity of the SR is limited so the mitochondria probably buffer a large part of this load. However, when Ca uptake into the mitochondria is blocked, the gain in Ca is still mmolar and the increase in [Ca]i still marginal, suggesting an additional buffering site. Measurements of the Na/Ca stoichiometry on sarcolemmal vesicles gave a value of 3, but in ventricle values of around 2.5 or 3 are found. Reasons for this are discussed, as are the differences amongst the different methods of Ca measurement. The interaction of the sarcolemmal Ca pump and the exchanger are considered and it is suggested they could interact via [Na]i. At rest both systems could remove Ca from the cell but on a large perturbation the Na/Ca exchange would be the more important of the two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号