首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster   总被引:28,自引:0,他引:28  
Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2'-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92-encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92-transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non-cell-autonomous Myc-induced tumor phenotypes.  相似文献   

3.
Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.  相似文献   

4.
5.
Genetically modified mice have been extensively used for analyzing the molecular events that occur during tumor development. In many, if not all, cases, however, it is uncertain to what extent the mouse models reproduce features observed in the corresponding human conditions. This is due largely to lack of precise methods for direct and comprehensive comparison at the molecular level of the mouse and human tumors. Here we use global gene expression patterns of 68 hepatocellular carcinomas (HCCs) from seven different mouse models and 91 human HCCs from predefined subclasses to obtain direct comparison of the molecular features of mouse and human HCCs. Gene expression patterns in HCCs from Myc, E2f1 and Myc E2f1 transgenic mice were most similar to those of the better survival group of human HCCs, whereas the expression patterns in HCCs from Myc Tgfa transgenic mice and in diethylnitrosamine-induced mouse HCCs were most similar to those of the poorer survival group of human HCCs. Gene expression patterns in HCCs from Acox1(-/-) mice and in ciprofibrate-induced HCCs were least similar to those observed in human HCCs. We conclude that our approach can effectively identify appropriate mouse models to study human cancers.  相似文献   

6.
Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni   总被引:1,自引:0,他引:1  
Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.  相似文献   

7.
A genome-wide survey of RAS transformation targets   总被引:28,自引:0,他引:28  
  相似文献   

8.
9.
AID is required for germinal center-derived lymphomagenesis   总被引:1,自引:0,他引:1  
Most human B cell non-Hodgkin's lymphomas (B-NHLs) derive from germinal centers (GCs), the structure in which B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR) before being selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant SHM, which arise from mistakes occurring during CSR and SHM. A direct link between these DNA remodeling events and GC lymphoma development, however, has not been demonstrated. Here we have crossed three mouse models of B cell lymphoma driven by oncogenes (Myc, Bcl6 and Myc/Bcl6; refs. 5,6) with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both CSR and SHM. We show that AID deficiency prevents Bcl6-dependent, GC-derived B-NHL, but has no impact on Myc-driven, pre-GC lymphomas. Accordingly, abrogation of AID is associated with the disappearance of CSR- and SHM-mediated structural alterations. These results show that AID is required for GC-derived lymphomagenesis, supporting the notion that errors in AID-mediated antigen-receptor gene modification processes are principal contributors to the pathogenesis of human B-NHL.  相似文献   

10.
Embryonic stem cells rely on Polycomb group proteins to reversibly repress genes required for differentiation. We report that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation.  相似文献   

11.
12.
To identify new immortalizing genes with potential roles in tumorigenesis, we performed a genetic screen aimed to bypass the rapid and tight senescence arrest of primary fibroblasts deficient for the oncogene Bmi1. We identified the T-box member TBX2 as a potent immortalizing gene that acts by downregulating Cdkn2a (p19(ARF)). TBX2 represses the Cdkn2a (p19(ARF)) promoter and attenuates E2F1, Myc or HRAS-mediated induction of Cdkn2a (p19(ARF)). We found TBX2 to be amplified in a subset of primary human breast cancers, indicating that it might contribute to breast cancer development.  相似文献   

13.
14.
15.
16.
17.
Evidence for an instructive mechanism of de novo methylation in cancer cells   总被引:19,自引:0,他引:19  
DNA methylation has a role in the regulation of gene expression during normal mammalian development but can also mediate epigenetic silencing of CpG island genes in cancer and other diseases. Many individual genes (including tumor suppressors) have been shown to undergo de novo methylation in specific tumor types, but the biological logic inherent in this process is not understood. To decipher this mechanism, we have adopted a new approach for detecting CpG island DNA methylation that can be used together with microarray technology. Genome-wide analysis by this technique demonstrated that tumor-specific methylated genes belong to distinct functional categories, have common sequence motifs in their promoters and are found in clusters on chromosomes. In addition, many are already repressed in normal cells. These results are consistent with the hypothesis that cancer-related de novo methylation may come about through an instructive mechanism.  相似文献   

18.
Identifying distinct classes of bladder carcinoma using microarrays   总被引:15,自引:0,他引:15  
Bladder cancer is a common malignant disease characterized by frequent recurrences. The stage of disease at diagnosis and the presence of surrounding carcinoma in situ are important in determining the disease course of an affected individual. Despite considerable effort, no accepted immunohistological or molecular markers have been identified to define clinically relevant subsets of bladder cancer. Here we report the identification of clinically relevant subclasses of bladder carcinoma using expression microarray analysis of 40 well characterized bladder tumors. Hierarchical cluster analysis identified three major stages, Ta, T1 and T2-4, with the Ta tumors further classified into subgroups. We built a 32-gene molecular classifier using a cross-validation approach that was able to classify benign and muscle-invasive tumors with close correlation to pathological staging in an independent test set of 68 tumors. The classifier provided new predictive information on disease progression in Ta tumors compared with conventional staging (P < 0.005). To delineate non-recurring Ta tumors from frequently recurring Ta tumors, we analyzed expression patterns in 31 tumors by applying a supervised learning classification methodology, which classified 75% of the samples correctly (P < 0.006). Furthermore, gene expression profiles characterizing each stage and subtype identified their biological properties, producing new potential targets for therapy.  相似文献   

19.
One of the most notable trends in mammalian evolution is the massive increase in size of the cerebral cortex, especially in primates. Humans with autosomal recessive primary microcephaly (MCPH) show a small but otherwise grossly normal cerebral cortex associated with mild to moderate mental retardation. Genes linked to this condition offer potential insights into the development and evolution of the cerebral cortex. Here we show that the most common cause of MCPH is homozygous mutation of ASPM, the human ortholog of the Drosophila melanogaster abnormal spindle gene (asp), which is essential for normal mitotic spindle function in embryonic neuroblasts. The mouse gene Aspm is expressed specifically in the primary sites of prenatal cerebral cortical neurogenesis. Notably, the predicted ASPM proteins encode systematically larger numbers of repeated 'IQ' domains between flies, mice and humans, with the predominant difference between Aspm and ASPM being a single large insertion coding for IQ domains. Our results and evolutionary considerations suggest that brain size is controlled in part through modulation of mitotic spindle activity in neuronal progenitor cells.  相似文献   

20.
We present the first analysis of the human proteome with regard to interactions between proteins. We also compare the human interactome with the available interaction datasets from yeast (Saccharomyces cerevisiae), worm (Caenorhabditis elegans) and fly (Drosophila melanogaster). Of >70,000 binary interactions, only 42 were common to human, worm and fly, and only 16 were common to all four datasets. An additional 36 interactions were common to fly and worm but were not observed in humans, although a coimmunoprecipitation assay showed that 9 of the interactions do occur in humans. A re-examination of the connectivity of essential genes in yeast and humans indicated that the available data do not support the presumption that the number of interaction partners can accurately predict whether a gene is essential. Finally, we found that proteins encoded by genes mutated in inherited genetic disorders are likely to interact with proteins known to cause similar disorders, suggesting the existence of disease subnetworks. The human interaction map constructed from our analysis should facilitate an integrative systems biology approach to elucidating the cellular networks that contribute to health and disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号