首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary The platelet membrane insulin receptors of healthy and non-insulin dependent (type 2) diabetic patients were studied. Receptor number and affinity proved to be decreased in type 2 diabetes mellitus. The changes in platelet insulin receptor characteristics are in good correlation with the alterations reported in other tissues or cells. The possible role of these phenomena in the pathogenesis of disturbed platelet function in diabetics needs further investigation.  相似文献   

2.
The type III inositol 1,4,5-trisphosphate receptor (InsP3R) is an important intracellular calcium (Ca2+) release channel in the pancreatic beta cell. Pancreatic beta cells secrete insulin following a characteristic change in membrane potential that leads to an increase in cytoplasmic Ca2+. Both extracellular Ca2+ and Ca2+ mobilized from InsP3-sensitive stores contribute to this increase. RIN-m5F cells, an insulin-secreting beta cell line, preferentially express the type III InsP3R. These cells have been useful in determining the regulatory properties of the type III InsP3R and the role of this isoform in an intact cell. The type III InsP3R is ideal for signal initiation because high cytoplasmic Ca2+ does not inhibit its activity. Altered insulin secretion, the result of changes in Ca2+ handling by the beta cell, has significant clinical consequences.  相似文献   

3.
Obesity-related insulin resistance is a chronic inflammatory condition that often gives rise to type 2 diabetes (T2D). Much evidence supports a role for pro-inflammatory T cells and macrophages in promoting local inflammation in tissues such as visceral adipose tissue (VAT) leading to insulin resistance. More recently, B cells have emerged as an additional critical player in orchestrating these processes. B cells infiltrate VAT and display functional and phenotypic changes in response to diet-induced obesity. B cells contribute to insulin resistance by presenting antigens to T cells, secreting inflammatory cytokines, and producing pathogenic antibodies. B cell manipulation represents a novel approach to the treatment of obesity-related insulin resistance and potentially to the prevention of T2D. This review summarizes the roles of B cells in governing VAT inflammation and the mechanisms by which these cells contribute to altered glucose homeostasis in insulin resistance.  相似文献   

4.
Using surface plasmon resonance (SPR) and electrospray mass spectrometry (ESI-MS), proinsulin C-peptide was found to influence insulin-insulin interactions. In SPR with chip-bound insulin, C-peptide mixed with analyte insulin increased the binding, while alone C-peptide did not. A control peptide with the same residues in random sequence had little effect. In ESI-MS, C-peptide lowered the presence of insulin hexamer. The data suggest that C-peptide promotes insulin disaggregation. Insulin/insulin oligomer μM dissociation constants were determined. Compatible with these findings, type 1 diabetic patients receiving insulin and C-peptide developed 66% more stimulation of glucose metabolism than when given insulin alone. A role of C-peptide in promoting insulin disaggregation may be important physiologically during exocytosis of pancreatic β-cell secretory granulae and pharmacologically at insulin injection sites. It is compatible with the normal co-release of C-peptide and insulin and may contribute to the beneficial effect of C-peptide and insulin replacement in type 1 diabetics. Received 3 May 2006; received after revision 9 June 2006; accepted 12 June 2006 Free Online Access  相似文献   

5.
Regulation of insulin receptor function   总被引:1,自引:0,他引:1  
Resistance to the biological actions of insulin contributes to the development of type 2 diabetes and risk of cardiovascular disease. A reduced biological response to insulin by tissues results from an impairment in the cascade of phosphorylation events within cells that regulate the activity of enzymes comprising the insulin signaling pathway. In most models of insulin resistance, there is evidence that this decrement in insulin signaling begins with either the activation or substrate kinase activity of the insulin receptor (IR), which is the only component of the pathway that is unique to insulin action. Activation of the IR can be impaired by post-translational modifications of the protein involving serine phosphorylation, or by binding to inhibiting proteins such as PC-1 or members of the SOCS or Grb protein families. The impact of these processes on the conformational changes and phosphorylation events required for full signaling activity, as well as the role of these mechanisms in human disease, is reviewed in this article. Received 3 August 2006; received after revision 1 December 2006; accepted 8 January 2007  相似文献   

6.
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.  相似文献   

7.
The ability to regulate energy balance at both the cellular and whole body level is an essential process of life. As western society has shifted to a higher caloric diet and more sedentary lifestyle, the incidence of type 2 diabetes (non-insulin-dependent diabetes mellitus) has increased to epidemic proportions. Thus, type 2 diabetes has been described as a disease of 'chronic overnutrition'. There are abundant data to support the relationship between nutrient availability and insulin action. However, there have been multiple hypotheses and debates as to the mechanism by which nutrient availability modulates insulin signaling and how excess nutrients lead to insulin resistance. One well-established pathway for nutrient sensing is the hexosamine biosynthetic pathway (HSP), which produces the acetylated aminosugar nucleotide uridine 5′-diphospho-N-acetylglucosamine (UDP-GlcNAc) as its end product. Since UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc), the possibility of this posttranslational modification serving as the nutrient sensor has been proposed. We have recently directly tested this model in adipocytes by examining the effect of elevated levels of O-GlcNAc on insulin-stimulated glucose uptake. In this review, we summarize the existing work that implicates the HSP and O-GlcNAc modification as nutrient sensors and regulators of insulin signaling. RID="*" ID="*"Corresponding author.  相似文献   

8.
New insights into the metabolic and molecular basis for diabetic neuropathy   总被引:10,自引:0,他引:10  
Diabetic polyneuropathy is the most common complication of diabetes mellitus. Several interactive pathogenetic mechanisms have been identified mainly in streptozotocin-induced diabetes in rats and have been ascribed to hyperglycemia. Over the last number of years it is becoming increasingly clear that diabetic neuropathy differs in type 1 and type 2 diabetes in humans and in murine models that more accurately mimic the human disorders. Beside hyperglycemia, attention is increasingly being paid to the pathogenetic roles of insulin and C-peptide deficiencies, particularly in type 1 diabetic neuropathy. There is now evidence to suggest that insulin and C-peptide deficiencies are mainly responsible for perturbations of neurotrophic factors and contribute to oxidative stress in diabetic nerve. This may also be true for apoptotic phenomena afflicting both the peripheral and central nervous systems in diabetes. The new data have lead to re-evaluations of pathogenetic components in this complex disorder, and their further exploration is likely to form a more refined basis for future therapeutic and preventive measures.Received 25 February 2003; received after revision 12 May 2003; accepted 19 May 2003  相似文献   

9.
Guanylate cyclase in human platelets with different aggregability   总被引:1,自引:0,他引:1  
The activity of human platelet guanylate cyclase, and the activation of the enzyme by sodium nitroprusside were decreased in platelets with increased aggregability; these platelets were obtained from diabetes mellitus patients. Anomalies in guanylate cyclase activity and ADP-induced aggregation were more pronounced in platelets from subjects with type II than those with type I diabetes.  相似文献   

10.
Summary The activity of human platelet guanylate cyclase, and the activation of the enzyme by sodium nitroprusside were decreased in platelets with increased aggregability; these platelets were obtained from diabetes mellitus patients. Anomalies in guanylate cyclase activity and ADP-induced aggregation were more pronounced in platelets from subjects with type II than those with type I diabetes.  相似文献   

11.
Platelet monoamine oxidase B: use and misuse   总被引:4,自引:0,他引:4  
M B Youdim 《Experientia》1988,44(2):137-141
The human platelet in addition to having serotonin (5-HT) receptors, uptake carriers (receptor) and transmitter storage vesicles, primarily possesses mitochondrial monoamine oxidase (MAO) type B. Similar to the major form of MAO in the human brain, this enzyme actively oxidizes A-B and B substrates (tyramine, dopamine, phenylethylamine) as well as the novel secondary amine anticonvulsant, milacemide and dopaminergic neurotoxin, MPTP. 5-HT oxidation is hardly affected by the platelet enzyme and MAO inhibitors have no net effect on its accumulation. MAO-B is selectively inhibited by 1-deprenyl and thus the platelet enzyme may be useful to monitor the anti-Parkinson activity of such drugs, as related to their ability to inhibit brain MAO-B. The oxidation of the anticonvulsant, milacemide, to glycine in vitro and in vivo by MAO-B, may herald new prospects for the development of inert prodrugs capable of being metabolized to neuroactive substances by MAO-B. The plasma levels of their metabolites may be an index of MAO-B activity found in the platelet and brain.  相似文献   

12.
The human platelet in addition to having serotonin (5-HT) receptors, uptake carriers (receptor) and transmitter storage vesicles, primarily possesses mitochondrial monoamine oxidase (MAO) type B. Similar to the major form of MAO in the human brain, this enzyme actively oxidizes A-B and B substrates (tyramine, dopamine, phenylethylamine) as well as the novel secondary amine anticonvulsant, milacemide and dopaminergic neurotoxin, MPTP. 5-HT oxidation is hardly affected by the platelet enzyme and MAO inhibitors have no net effect on its accumulation. MAO-B is selectively inhibited by 1-deprenyl and thus the platelet enzyme may be useful to monitor the anti-Parkinson activity of such drugs, as related to their ability to inhibit brain MAO-B. The oxidation of the anticonvulsant, milacemide, to glycine in vitro and in vivo by MAO-B, may herald new prospects for the development of inert prodrugs capable of being metabolized to neuroactive substances by MAO-B. The plasma levels of their metabolites may be an index of MAO-B activity found in the platelet and brain.  相似文献   

13.
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.  相似文献   

14.
Summary To determine the importance of 2-ketoisocaproate metabolism in its insulin secretory action, 4-methyl-2-methylenevalerate, a non-metabolizable analogue, was tested for its ability to promote insulin secretion, and to interfere with the metabolism and insulin secretory action of 2-ketoisocaproate. 4-Methyl-2-methylenevalerate did not induce insulin release by isolatedob/ob mouse pancreatic islets, but it inhibited insulin release in response to 2-ketoisocaproate and reduced the rate of decarboxylation and oxidation of labeled 2-ketoisocaproate. The results suggest that 4-methyl-2-methylenevalerate interferes with the insulin secretory action of 2-ketoisocaproate, owing to their common brached-chain chemical structure.The skilful technical assistance of Miss S. Detels is gratefully acknowledged.  相似文献   

15.
Insulin secretion is finely tuned to the requirements of tissues by tight coupling to prevailing blood glucose levels. The normal regulation of insulin secretion is coupled to glucose metabolism in the pancreatic B cell, a major but not exclusive signal for secretion being closure of K+ATP (adenosine triphosphate)-dependent channels in the cell membrane through an increase in cytosolic ATP/adenosine diphosphate. Insulin secretion in type 2 diabetes is abnormal in several respects due to genetic causes but also due to the metabolic environment of the pancreatic B cells. This environment may be particularly important for the deterioration of insulin secretion which occurs with increasing duration of diabetes. Factors in the environment with potential importance include overstimulation, a negative effect of hyperglycemia per se (‘glucotoxicity’) as well as adverse effects of elevated fatty acids (‘lipotoxicity’). Elucidating the mechanisms behind these factors as well as their clinical importance will pave the way for treatment which could preserve B-cell function in type 2 diabetic patients. Received 4 October 1999; received after revision 1 November 1999; accepted 3 December 1999  相似文献   

16.
The role of Sam68, an RNA binding protein and putative substrate of the insulin receptor (IR) in insulin signaling was studied using CHO wild type (WT) cells, CHO cells overexpressing IR, and rat white adipocytes as a physiological system. In CHO-IR cells and adipocytes, Sam68 was tyrosine phosphorylated in response to insulin, and then associated with p85 phosphatidylinositol-3 kinase along with IRS-1. Sam68 was localized mainly in the nucleus of CHO-WT, and both in the nucleus and cytoplasm of CHO-IR cells, but only in the cytoplasm of rat white adipocytes. Insulin stimulation for 16 h enhanced the expression of Sam68 in rat adipocytes and CHO-IR cells. Moreover, CHO-IR cells expressed more Sam68 than CHO-WT, suggesting that overexpression of the IR is enough to induce the expression of Sam68. In summary, these results demonstrate that Sam68 works as a cytoplasmic docking protein which is recruited by IR signaling and whose expression is induced by insulin stimulation, suggesting a putative role for Sam68 in insulin signal transduction.  相似文献   

17.
The mechanisms whereby intracellular calcium concentration is controlled are briefly reviewed. With the current knowledge of both calcium homeostasis and the function and properties of cellular Ca2+-target proteins/signal transduction systems, a dysfunction of cellular calcium metabolism is considered in relation to the pathogenesis of hypertension. Although the enhanced peripheral vascular resistance characteristic of hypertension is ultimately a function of Ca2+ availability for smooth muscle cell contraction, the platelet possesses many parallel biochemical and physiological properties. Therefore, we have utilized the platelet as the cell-model for investigating the role of Ca2+ in hypertension disorders. An overview of Ca2+-linked platelet processes altered in essential hypertension is presented, and an attempt is made to integrate these multiple aberrations in a fundamental membrane lesion.  相似文献   

18.
Platelet research in psychiatry   总被引:3,自引:0,他引:3  
A Wirz-Justice 《Experientia》1988,44(2):145-152
The platelet is one of the most researched biological markers in psychiatry. Characteristics of MAO activity, 5-HT uptake, imipramine and alpha 2-adrenergic receptor binding, for example, are similar in platelet and CNS. Methodological factors are not negligible, and range from diagnostic specificity and drug effects to the normal physiological variability of age and hormone-related changes, circadian and seasonal rhythms. As yet, there are no clear state or trait platelet markers in affective disorders and schizophrenia that can be unequivocally used to detect vulnerability to the illness, predict therapeutic response, define clinical diagnostic entities or follow the course of the illness. However, platelet markers are increasingly being used in careful studies to monitor psychopharmacological effects (an in vivo assay of all active metabolites), different ligands can be specific markers for certain aspects of a psychiatric illness (e.g. alpha 2-adrenergic receptors and weight loss), and this homogeneous preparation of human cells is an increasingly important tool in studying mechanisms in pathophysiology. More longitudinal studies are required to establish functional relationships between platelet variables and psychopathology.  相似文献   

19.
An update on the biology and physiology of resistin   总被引:8,自引:0,他引:8  
Resistin is a newly discovered adipocyte hormone. It is related to resistin-like molecules alpha, beta and gamma in structure and function. Resistin is produced by white and brown adipose tissues but has also has been identified in several other tissues, including the hypothalamus, pituitary and adrenal glands, pancreas, gastrointestinal tract, myocytes, spleen, white blood cells and plasma. The tissue level of resistin is decreased by insulin, cytokines such as tumour necrosis factor alpha, endothelin-1 and increased by growth and gonadal hormones, hyperglycaemia, male gender and some proinflammatory cytokines, such as interleukin-6 and lipopolysaccharide. Resistin antagonizes insulin action, and it is downregulated by rosiglitazone and peroxisome proliferator-activated receptor gamma agonists. Since evidence of a direct link between resistin genotype and human diabetes is still weak, more molecular, physiological and clinical studies are needed to determine the role of resistin in the aetiology of type 2 diabetes.  相似文献   

20.
Platelets as a model for neurones?   总被引:9,自引:0,他引:9  
The multiple biochemical and pharmacological similarities existing between blood platelets and 5-hydroxytryptamine (5-HT)-containing neurones of the CNS point to the platelets as a reliable model for the biochemical characterization of 5-HT releasers and uptake blockers which interfere with the storage and the active carrier mechanism of 5-HT in the neurones, respectively. In addition, the affinity displayed by dopamine and by dopaminergic neurotoxin MPP+ for the platelet 5-HT transport and storage indicates also some similarities between platelets and the dopaminergic system of the CNS. Since human platelets contain almost exclusively monoamine oxidase type B (MAO-B), they can be used as a source for the purification and characterization of this human enzyme. Human platelets thus offer an excellent peripheral model to indirectly assess the degree and duration of MAO-B inhibition occurring in the CNS. To date, knowledge of the many biochemical mechanisms underlying platelet physiology is still fragmentary. In fact, the functional role of binding sites located on the platelet cytoplasmic membrane, i.e. their coupling to a specific transmembrane signalling mechanism, is still in need of a precise biochemical and physiological characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号