首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
以凹凸棒土为粘接剂制备颗粒13X分子筛/凹凸棒土吸附剂,考察不同煅烧温度下所制复合材料的孔结构、表面形貌、热稳定性及其对Pb~(2+)去除率,并以所制吸附剂为填料进行柱实验,研究其去除Pb~(2+)的机理及废水中Pb~(2+)浓度和水力负荷对吸附效果的影响。结果表明,适当提高煅烧温度,可增大复合材料的比表面积和孔体积,有利于废水中Pb~(2+)的吸附,但当煅烧温度高于700℃时,材料的晶体结构被破坏,比表面积由492.50 m~2·g~(-1)急剧下降至2.80 m~2·g~(-1);13X分子筛/凹凸棒土吸附剂可通过中和沉淀、过滤截留和离子交换吸附等方式有效去除废水中的Pb~(2+),填充柱的穿透时间随水力负荷和Pb~(2+)浓度的增大而缩短,当水力负荷为7.4 m~3·m~(-2)·h~(-1)时,13X分子筛/凹凸棒土颗粒的饱和吸附量最大,为542 mg·g~(-1)。  相似文献   

2.
以椰子壳为原料,经过磷酸活化制得活性炭,键合苯甲酰异硫氰酸酯制得表面键合配位体改性活性炭固相萃取材料。利用N_2吸附-脱附、SEM、XPS、FT-IR等手段对所制备的固相萃取填料进行表征,考察了其对Zn~(2+)、Mn~(2+)、Pb~(2+)、Cd~(2+)和Ag~+金属离子的吸附性能。结果表明,该固相萃取填料对Zn~(2+)、Mn~(2+)、Pb~(2+)、Cd~(2+)和Ag~+的吸附容量分别为12.86、11.27、10.91、10.13和9.87 mg·g~(-1)。以5 mol·L~(-1) HNO_(3 )+0.05 mo·L~(-1)乙二胺四乙酸二钠溶液作为洗脱液对吸附的金属离子进行洗脱,通过固相萃取(SPE)与电感耦合等离子体质谱(ICP-MS)联用测定水样中重金属离子的含量,Zn~(2+)、Mn~(2+)、Pb~(2+)、Cd~(2+)和Ag~+的检出限分别为0.147、0.177、0.185、0.228和0.249 mg·L~(-1)。  相似文献   

3.
采用大孔氯球与井冈霉素胺解,合成了聚苯乙烯支载井冈霉素吸附树脂;通过红外光谱、元素分析等表征了树脂的结构,测定了该树脂的孔结构、含水量和溶胀性能,并研究了该树脂在不同温度下对葛根异黄酮的吸附等温线,利用热力学函数关系计算出了吸附焓、自由能和熵.结果表明:树脂对葛根异黄酮的静态吸附容量达123.7 mg·g-1(干树脂)...  相似文献   

4.
采用胶晶模板法,以正硅酸乙酯为硅源,以聚苯乙烯(PS)为模板剂,以三甲氧基硅烷为巯基功能化接枝剂,制备了多级孔结构的巯基功能化SH-SiO_2材料.以此为吸附剂探究了间歇式动态吸附条件下吸附剂用量、吸附时间及pH值对水中Hg~(2+)去除效果的影响.并采用TEM、SEM、FTIR、N_2-物理吸附、压汞及ED对材料进行结构和组份分析表征.结果表明,所制备的多级孔SH-SiO_2空间形貌呈有序的大孔(~200 nm)、介孔(3~20 nm)及微孔(<5 nm)多级孔结构.间歇式动态吸附方式表明,当吸附剂中S含量为8.52%,用量为10mg,吸附时间为70min,溶液的pH值为7.5~8时,水中Hg~(2+)吸附率可达90%以上.  相似文献   

5.
用硝基苯作溶剂一锅法成功合成了高交联聚苯乙烯大网均孔树脂,树脂的外观较好,具有较高的比表面积(约250m2·g-1),对5g·L-1苯酚溶液中苯酚静态吸附可达180mg·g-1,动态吸附量达298mg·g-1.  相似文献   

6.
本文对用H_2S四组系统分析鉴定下列阳离子Pb~(2+)、Cd~(2+)、Bi~(3+)、Hg~(2+)、Sb(ⅢV)、Cr~(3+)、Ni~(2+)等的条件及方法进行了研讨。  相似文献   

7.
用荧光光谱法研究了烷基酚聚氧乙烯醚(OP-10)对常见金属离子的荧光识别性能,发现在适当的条件下,OP-10对Hg~(2+)呈现出高选择性荧光猝灭响应,猝灭常数为Ksv=2 112 L·mol-1.在OP-10浓度为2.0 mmol·L-1,p H值为4.1的BR缓冲溶液中,等浓度的Hg~(2+)使其在320 nm处的荧光强度降低86%.基于上述荧光猝灭作用,建立了一种新的Hg~(2+)荧光检测方法.OP-10的荧光强度与Hg~(2+)浓度在0.1×10~(-4)~4.4×10~(-4) mol·L~(-1)范围内呈良好的线性关系,线性相关系数为0.996 8.检出限为49 nmol·L-1.该荧光试剂OP-10可用于水样中Hg~(2+)的检测.  相似文献   

8.
以膨润土为载体,负载1%质量分数的壳聚糖后,制得一种复合吸附剂,用于四种活性染料活性大红B-3G、活性深兰B-2GLN、活性黑B-GRFN、活性墨绿B-4BLN的吸附平衡研究,在100mg·L-1浓度范围内,每种染料的饱和吸附容量分别是11.850mg·g-1、7.760mg·g-1、7.276mg·g-1、8.362mg·g-1,对四种染料的等温吸附平衡数据分别用Langmuir、Freundlich等温方程式进行分析,更符合Langmuir模型。通过X-射线衍射实验结果表明,膨润土的片状层结构未发生变化。吸附的可能机理为单分子层化学吸附作用。  相似文献   

9.
以氧化石墨烯为载体,以Fe~(3+)和Fe~(2+)发生化学共沉淀形成的具有磁性的铁氧化物纳米粒子为磁性源,采用化学方法制备了Fe_3O_4/GO二元复合材料,并利用TEM、XRD、FTIR等手段对Fe_3O_4/GO二元复合材料进行了物理表征,结果表明成功合成了磁性氧化石墨烯。研究了此二元复合材料的吸附动力学、吸附等温线及初始pH值对吸附的影响,考察了Fe_3O_4/GO对水中Pb~(2+)的去除效果。结果表明,pH在7.0时复合材料的吸附效果最好,吸附时间在210 min左右时达到吸附平衡,最大吸附量为135.7 mg·g~(-1)。  相似文献   

10.
针对制革废水中的三价铬污染问题,以没食子酸(GA)作为负载物,采用一步法合成了Fe_3O_4@GA纳米粒子,并考察了该纳米粒子对三价铬的吸附特性。通过傅里叶红外光谱(FT-IR)、比表面积分析仪(BET)、X-射线衍射仪(XRD)、热重分析仪(TGA)、振动样品磁强计(VSM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对纳米材料的微观特性进行了表征。结果表明,GA能够有效负载到Fe_3O_4纳米粒子上,负载量为4.9%(质量分数),修饰过程不会改变Fe_3O_4纳米粒子的晶相结构。负载后的Fe_3O_4@GA的比表面积为83.52 m~2·g~(-1),粒径为10~15 nm,饱和磁强度为51.12 emu·g-1,有很好的分离特性。吸附实验表明,Cr~(3+)的去除率随pH值和吸附剂投加量的增大而增高。吸附动力学符合拟二级模型,最大吸附容量为12.19 mg·g~(-1),吸附等温模型符合Freundlich模型。Fe_3O_4@GA可以有效去除制革废水中的Cr~(3+)。  相似文献   

11.
将2,3-二醛基氧化纤维素的6位羟基先用二氯亚砜氯化,然后多胺化反应制备二乙烯基三胺基氧化纤维素(YXA2.3).对其进行了元素分析、IR光谱分析和光电子能谱检测,并在透析液和纯水中对尿酸和砷(Ⅲ)分别进行了吸附实验.结果表明,在纯水中,当尿酸浓度为1.0 mg·L-1、吸附温度为37℃、透析液pH值为7,动态吸附实验在8 h时达到吸附平衡,平衡时吸附容量为20.5 mg·g-1;当砷(Ⅲ)浓度为20.0μg·mL-1透析液时,动态吸附实验均在8 h达到吸附平衡,平衡时吸附容量分别为411.0 μg·g-1.由此可知所研制二乙烯基三胺基氧化纤维素具有分别吸附尿酸和三价砷的功能.  相似文献   

12.
针对纳米零价铁易团聚和表面形成钝化层的问题,以凹凸棒土为载体、镍为掺杂金属,制备了凹凸棒土负载铁/镍复合材料(用A-Fe/Ni表示)。由SEM可观察到A-Fe/Ni中的纳米Fe/Ni长链变短、且有单个纳米Fe/Ni球形颗粒出现。比表面积测定结果表明,A-Fe/Ni的BET比表面积为86.17 m2·g-1,远高于纳米Fe/Ni的比表面积(33.62 m2·g-1)。平均粒径也由负载前的178.52 nm减小到了69.63 nm。A-Fe/Ni相比纳米Fe/Ni对水中Zn(Ⅱ)有更快的去除速率和更好的去除效果,以2 g·L-1投加量对100 mg·L-1Zn(Ⅱ)进行吸附,10 min即可达到99.8%的去除率,而成本仅为后者的1/3。A-Fe/Ni除锌机理主要是化学吸附,吸附过程符合Lagergren准二级动力学模型和Langmuir吸附模型,最大吸附量为133.33 mg·g~(-1)。  相似文献   

13.
以苯乙烯和二乙烯苯为单体,采用悬浮聚合法合成大孔交联微球.将氯甲基化的交联聚苯乙烯(CM-CPS)和井冈霉素在N,N-二甲基甲酰胺(DMF)中进行胺化反应,得到一种新型聚苯乙烯支载井冈霉素功能高分子微球.采用红外光谱、元素分析、BET测试等手段分析了树脂的结构,并研究了该树脂对硼酸在不同温度下的吸附等温线,利用热力学函数探讨了该树脂的吸附机理和吸附能力.结果表明:该微球对硼酸有很强的配位吸附作用,其动态吸附量达到13.75 g.L-1(湿树脂).  相似文献   

14.
以粉末13X分子筛为原料、凸凹棒土为粘合剂制备了颗粒13X分子筛复合材料,采用扫描电子显微镜、X-射线衍射仪、比表面积分析仪等对其形貌和结构进行表征,研究了颗粒13X分子筛固定床对Zn~(2+)的去除及其机理。结果表明,颗粒13X分子筛具有微孔-介孔-大孔的多级孔结构,BET比表面积达442. 95 m~2·g~(-1),仍保留了粉末13X分子筛的晶相结构;颗粒13X分子筛固定床除Zn~(2+)的机理主要为离子交换吸附和化学沉淀作用,并且穿透点出水pH在7左右,吸附饱和后材料中锌的含量为9. 75%;颗粒13X分子筛固定床中去除Zn~(2+)的过程符合Thomas模型,不同流速下对Zn~(2+)的平衡吸附量为1. 36~1. 81 mmol·g~(-1)。  相似文献   

15.
以树脂D072为载体,采用动态吸附法负载Fe2+,制备了非均相芬顿反应催化剂,并通过单因素实验确定了动态吸附法制备非均相芬顿反应催化剂的最佳吸附条件。结果表明:Fe2+溶液初始浓度2 000 mg.L-1、pH=4和反应时间为40 min时D072负载Fe2+的平衡吸附量为113.6 mg.g-1(干)。D072对Fe2+的动态吸附符合Thomas模型,KTH为7.55×10-2mL.min-1.mg-1。通过吸附前后树脂D072表面SEM形貌比较发现,D072表面没有明显的裂纹。可见,动态吸附法能够避免催化剂的磨损。以D072为载体的非均相芬顿反应催化剂静态法对三种模拟染料废水脱色率达到97%。  相似文献   

16.
将大孔交联氯甲基聚苯乙烯(CMPS)与井冈羟胺A发生胺化反应,合成了井冈羟胺A修饰的大孔交联树脂(VACMPS);通过对树脂残余氯含量,BET比表面积及红外光谱的测定,对获得的树脂进行了结构分析,并研究了该树脂在不同温度下对水杨酸的吸附等温线,利用热力学函数关系计算出了吸附焓、自由能和熵.动态吸附与脱附实验表明湿态VACMPS树脂对水杨酸的饱和吸附容量达73.59 g.L-1,树脂可以通过4%NaOH溶液重生.推测井冈羟胺A修饰的大孔交联树脂(VACMPS)对水中水杨酸的吸附作用是氢键作用,π-π共轭,静电作用及疏水作用共同参与的吸附过程.  相似文献   

17.
以十六烷基三甲基溴化铵(CTAB)为模板剂,对二亚胺基苯桥联硅烷(AN-Si)和正硅酸乙酯为硅源,在碱性条件下合成了一种新型功能化桥键介孔氧化硅(AN-PMOs).用红外光谱、X射线粉末衍射、N2吸附-脱附、扫描电镜、透射电镜等方法对材料进行性能表征.并以Cd2+离子进行吸附性能测试.结果表明:有机基团的引入提高了材料的吸附能力,所得材料的静态饱和吸附容量达到98.03mg·g-1.  相似文献   

18.
对锰氧化还原菌生理生化和酶活力影响因素进行了研究.研究表明,锰氧化还原菌均具有异染颗粒(Poly-p)和类脂粒(PHB),易形成菌胶团,适于在贫营养水环境中生长.在10~15℃,pH中性偏碱条件下菌株均表现出较强的酶活力.Fe~(2+)、Al~(3+)和Mg~(2+)对锰氧化还原菌酶活力具有促进作用,其中Fe~(2+)促进作用最为明显;Cu~(2+)和Zn~(2+)对不同菌株酶活力的影响具有选择性;Hg~(2+)对多数锰氧化还原酶无促进作用,明显抑制菌株Exiguo-bacterium sp·MB4的酶活力.  相似文献   

19.
本文用单十四烷基磷酸酯(P-538,H_2RPO_4)分别和 PMBP、MiBK、DMSO、TBP、P-204 或 P-507组成的混合萃取剂的氯仿溶液,处理层析纸作为固定相,硫酸溶液用作展开剂,研究对稀土元素的协萃效应及其与非稀土元素的分离,实验表明二元异类协萃体系中,以 PMBP 的协萃效应最为显著,MiBk 和 DMSO 几无协萃效应,而 TBP 对 P-538萃取稀土有反协萃效应。二元同类协萃体系中,P-204的协萃效应较 P-507的好。根据协萃图的最高点提出协萃物的可能组成为 Ln(PMBP)_3·3P-538和 Ln(HRPO_4)_3·3H_2RPO_4·(2-3)P-204。测定了稀土及 UO_2~(2+)、Th~(4+)、Sc~(3+)、Al~(3+)、Fe~(3+)、Cu~(2+)、Hg~(2+)、Pb~(2+)等八种金属离子在0.325 mol/LH_2SO_4溶液中展开时的 R_F 值,除 Fe~(3+)、Al~(3+)外,其它金属离子都能获得良好的分离.  相似文献   

20.
二乙烯基三胺基氧化纤维素(YXA2,3)作为双功能吸附剂,在纯水和透析液中对一定浓度的肌酐和砷(Ⅲ)进行了吸附实验。结果表明,实验温度为37℃,pH值为7的透析液中,当肌酐浓度为100 mg.mL-1时,动态吸附实验在8 h时达到吸附平衡,平衡时吸附容量为3.32 mg.g-1;在纯水溶液和透析液中,当砷(Ⅲ)浓度都为2.0μg.mL-1时,动态吸附实验均在6 h达到吸附平衡,平衡时吸附容量分别为78.3μg.g-1、67.3μg.g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号