首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿热山地丘陵流域化学风化过程的碳汇估算   总被引:2,自引:0,他引:2  
通过对地表化学径流组成的分析, 应用化学物质平衡法和扣除法对增江流域化学风化过程产生的大气CO2 吸收通量进行估算. 结果表明: 在碳酸盐岩地层不纯且分布面积较少的增江流域, 径流溶解质主要由HCO3-, Ca2+, Na+和溶解性Si 组成; 硅酸盐矿物的化学风化过程是增江河流溶解质的主要来源, 其次是碳酸盐矿物化学风化过程的贡献.大气CO2 是增江流域岩石化学风化的主要侵蚀介质. 增江流域岩石化学风化过程对大气CO2 的吸收通量是(3.50~3.81)×105 mol km-2 a-1, 仅比热带-亚热带玄武岩和碳酸盐岩流域低, 高于温带-寒温带流域化学风化过程对CO2 的吸收通量. 受湿润季风环流影响的北半球中低纬度带地表化学风化过程构成全球生物地球化学循环的一个重要碳汇.  相似文献   

2.
不同土地利用下的岩溶作用强度及其碳汇效应   总被引:22,自引:0,他引:22  
章程 《科学通报》2011,56(26):2174-2180
不同土地利用下的岩溶作用研究不仅关系到区域岩溶碳汇估算, 也关系到岩溶区陆地碳源/汇的准确评估. 利用标准溶蚀试片法研究了2 个典型岩溶动力系统内3 个岩溶泉小流域不同土地利用下的土下溶蚀速率. 结果表明, 不同土地利用下的土下溶蚀速率差异较明显, 耕地、灌丛、次生林、草地、原始林平均值分别为4.02, 7.0, 40.0, 20.0 和63.5 t km-2 a-1. 因此, 在进行区域尺度岩溶作用碳汇估算时, 除了考虑气候、水文、地质等条件外, 还必须考虑土地利用类型的差异. 植被的正向演替对岩溶碳汇有显著的促进作用, 原始林地土下岩溶作用碳汇量是次生林地的3 倍, 灌丛的9 倍, 也就是说, 从耕地或灌丛演化到次生林地, 由岩溶作用产生的碳汇可提高5.71~7.02 t km-2 a-1, 若演化到原始林地则达24.86~26.17 t km-2 a-1. 岩溶区地表森林系统的增汇过程发生的同时, 地下也同步发生着类似的增汇过程.  相似文献   

3.
西藏地热异常区CO2 脱气研究: 以朗久和搭格架地热区为例   总被引:4,自引:0,他引:4  
沈立成  伍坤宇  肖琼  袁道先 《科学通报》2011,56(26):2198-2208
地球CO2 脱气作用在长时间尺度上对大气CO2 浓度有着巨大的影响, 是全球碳循环模型的重要组成部分. 西藏地区独特的构造条件形成大量水热异常区, 为研究热液运移过程中CO2 脱气作用提供了绝好的条件. 通过对朗久和搭格架地热异常区地质环境、水汽特征的研究表明两区热液组成成分均由钾长石和钠长石控制, 但出露温泉水朗久地区为Na-Cl 型, 搭格架地区为Na-HCO3 型. 两个地热田温泉水中CO2 分压模拟结果显示温泉水在从含水层向地表迁移过程中发生脱气作用. 通过对朗久地热田和搭格架地热田不同CO2 脱气机理的研究, 分析出不同的CO2 脱气量计算公式并计算出朗久地热田CO2 的脱气通量约为3.6×106 kg km-2 a-1, 搭格架地热区CO2 的脱气通量约为3.3×106 kg km-2 a-1.  相似文献   

4.
刘再华 《科学通报》2011,56(26):2209-2211
风化碳汇概念被提出至今已有18 年(Berner, 1992). 而今, 我们可以用最新的数据对其地质含义进行重新评估. 近来, Ryskov 等人以碳同位素的分析数据为基础认为: 在过去5000 年干旱时期的成土过程中, 俄罗斯的土壤以土壤碳酸盐的形式将大气中的CO2 固定下来, 其中黑钙土的固碳速率为2.2 kg C m-2 a-1、深栗钙土为1.13 kg C m-2 a-1、浅栗钙土为0.86 kg C m-2 a-1. 然而, 他们对数据的解释却是间接而缺乏说服力的, 因此, 其观点很可能误导读者. Dart 等人则持有相反的观点, 他们的研究表明, 澳大利亚风化层碳酸盐形成并没有吸收任何额外的CO2, 而仅是在库与库之间进行简单迁移的结果. 本文从以下两个问题对上述观点及其解释进行评述: (1) 土壤碳酸盐的成因: 硅酸盐风化和碳酸盐风化的比较; (2) 用碳同位素示踪土壤碳酸盐来源存在的问题. 得出的结论是: 土壤碳酸盐可能根本不是一个重要的大气CO2 汇, 也即是说, 碳酸盐风化成因的土壤碳酸盐没有吸收任何额外的CO2; 另一方面, 由于硅酸盐风化过程相当缓慢, 其形成的土壤碳酸盐在短时间尺度内对大气CO2 汇的能力很弱.  相似文献   

5.
分别于2008 和2009 年夏季对南海南沙群岛永暑礁(环礁)、西沙群岛永兴岛(岛礁)和海南三 亚鹿回头岸礁进行了海-气CO2 交换的连续观测. 结果表明: (1) 南海珊瑚礁区表层海水和大气 pCO2 存在明显的日周期变化, 白天下降, 晚上上升; (2) 不同礁区大气pCO2 日变幅小, 而表层海水 pCO2 日变幅较大, 永暑礁潟湖为~70 μmol mol-1, 鹿回头及永兴岛礁坪分别为264~579 μmol mol-1 和420~619 μmol mol-1, 鹿回头礁外为324~492 μmol mol-1; (3) 不同礁区海-气CO2交换通量也有较 大差异, 永暑礁潟湖为0.4 mmol CO2 m-2 d-1, 永兴岛礁坪为4.7 mmol CO2 m-2 d-1, 鹿回头湾为9.8 mmol CO2 m-2 d-1, 表明南海珊瑚礁在夏季是大气CO2 的源. 在水深较浅的礁坪, 生物代谢是海水 pCO2 变化的主要驱动因素, 而较深的潟湖或礁外, 水动力条件和生物代谢共同作用影响海水pCO2 的变化. 相对于大洋区, 无机碳代谢对珊瑚礁区海水pCO2 的变化有更显著的影响.  相似文献   

6.
给出了雨季(7月)鼎湖山季风常绿阔叶林两个土壤剖面(DHLS和DHS)中CO2气体的碳同位素组成和更新特征, 探讨了土壤CO2气体的来源比例. 结果表明: 该林区土壤CO2气体含量变化范围为6120~18718 μL•L−1, 随深度增加而增大, 75 cm以下则逐渐减少. 在DHLS剖面, 土壤CO2气体的δ13C值的变化范围为−24.71‰~−24.03‰, 与同层位气体含量呈显著负相关(R2=0.91), 模拟结果显示该剖面中的CO2气体主要来源于根系呼吸作用(>80%); 而在DHS剖面, 土壤CO2气体的δ13C值变化范围为−25.19‰~−22.82‰, 模拟结果显示除表层(20 cm)90%来源于根系呼吸作用外, 深部(40~105 cm)主要来源于微生物的分解作用(51%~94%). 14C年龄显示, DHLS和DHS剖面中土壤CO2气体中的碳均为现代碳, 14C年龄之间最大差值分别为8和14个月, DHLS剖面中土壤CO2气体更新速率较快. 在DHLS和DHS剖面中, 土壤CO2气体?14C值的变化范围分别为100.0‰~107.2‰和102.5‰~112.1‰, 高于现代大气CO2和同层位土壤有机碳的?14C值, 土壤CO2气体可能是大气核爆14C的一个重要储库.  相似文献   

7.
筑坝对喀斯特河流水体溶解性无机碳地球化学行为的影响   总被引:3,自引:0,他引:3  
彭希  刘丛强  王宝利  赵颜创 《科学通报》2014,59(4-5):366-373
为探究筑坝对河流溶解性无机碳(DIC)地球化学行为的影响, 对乌江流域的水库及河流进行了半月1次为期1年的现场监测和取样分析. 相对于入库河流, 库区叶绿素a浓度平均提高了5.6倍, 库区表层DIC中HCO3-和溶解CO2比重下降, CO32-比重和DIC碳同位素值(δ13CDIC)上升, 而水库下泄水中DIC各组分却表现出与库区表层相反的地球化学行为. δ13CDIC变化范围为-10.2‰~2.5‰, 表明碳酸盐岩风化、光合作用及呼吸作用共同控制了δ13CDIC的变化. 河流筑坝后浮游植物生物活动增强, 显著影响了原始河流DIC的地球化学行为, δ13CDIC可以用来判断这种变化过程. 河流-水库水体高频率监测对于准确评估筑坝河流CO2释放通量和明确碳循环过程中的源汇关系是非常必要的.  相似文献   

8.
地质作用与碳循环研究的回顾和展望   总被引:12,自引:0,他引:12  
袁道先 《科学通报》2011,56(26):2157-2157
大气温室气体浓度升高与全球气候变化相互关系的探讨使地球系统的碳循环受到了越来越多的关注. 后者是指碳在岩石圈、水圈、大气圈和生物圈之间, 以CO32- (以CaCO3, MgCO3 为主), HCO3-1, CO2, CH4, (CH2O)n(有机碳)等形式相互转换和运移的过程. 它既可制约一系列资源环境问题, 如农林业和水泥生产、化石燃料的形成分布、大气CO2 浓度变化等, 也受制于一系列地质作用, 如风化作用、搬运沉积作用、地震火山作用等.掌握其运行规律和机制, 是可持续发展的重要科学支撑.  相似文献   

9.
利用加速器质谱(AMS)技术, 通过测量北京地区一年生植物放射性碳同位素(14C), 系统分析了2009 年5~9 月北京地区大气Δ14C 水平和化石源CO2浓度分布. 研究结果表明, 北京地区大气Δ14C最高值为29.6‰±2.2‰, 最低值为-28.2‰±2.5‰, 表现出远郊-近郊-市区依次递减趋势, 这与由人类活动(人口密度、交通流量等)引起的化石源CO2 排放增加呈相反的变化趋势, 即人类活动频繁地区大气Δ14C值较低. 2009 年5~9 月北京地区大气化石源CO2浓度变化范围为(3.9±1.0)~(25.4±1.0) ppm, 每排放1 ppm 化石源CO2可使大气Δ14C水平下降~2.70‰. 用AMS 测量一年生植物14C这一方法, 为快速示踪大气化石源CO2浓度提供了有效手段.  相似文献   

10.
岩溶生态系统中微生物对岩溶作用影响的认识   总被引:6,自引:0,他引:6  
连宾  袁道先  刘再华 《科学通报》2011,56(26):2158-2161
从土壤及岩生微生物影响岩溶作用的速度和微生物捕获CO2 及诱导碳酸盐形成等方面分析了岩溶生态系统中微生物对岩溶作用的影响, 指出岩溶作用的速度和碳汇稳定性以及岩溶地区的碳循环与微生物有密切关联. 提出需要结合不同生态环境来定量研究自然条件下微生物对岩溶作用的影响, 以揭示生物对环境变迁的响应及其与岩溶效应之间的关系.  相似文献   

11.
青海湖现代沉积速率空间分布及沉积通量初步研究   总被引:1,自引:0,他引:1  
考察了青海湖表层沉积物137Cs活度及通量时空分布, 建立了湖泊沉积速率空间分布模式. 青海湖河口/岸边区域沉积物137Cs通量高, 但平均137Cs活度低; 湖中心区域137Cs通量低但平均活度高. 河口/岸边区域沉积速率高, 沉积物陆源组分(如SiO2, Fe2O3, Ti等)的含量及通量高. 湖中心区域沉积速率低, 化学/生物沉积组分(如次生碳酸盐)含量高. 因此, 决定青海湖沉积速率空间分布的主要因素是流域陆源物质的堆积速率. 根据本文获得的不同湖区沉积速率计算了青海湖平均质量堆积速率(0.0337 g•cm−2•a−1), 并用Ca质量平衡方法检验了该平均值的合理性. 在此基础上, 估算了青海湖沉积通量及流域泥沙输入和大气粉尘对湖泊沉积的贡献.  相似文献   

12.
二氧化碳气体的流动及反应特性研究: 从微管到多孔介质   总被引:3,自引:0,他引:3  
用5 μm微管、人造岩心及天然岩心研究了CO2气体的流动特性及与岩心作用后对渗透率的影响规律. 结果表明, CO2气体在微管中的流动速度明显比N2快; CO2在饱和水的岩心(含碳酸盐)中流动时, 其渗透率随着注入量的增加而增大, 表明CO2的溶蚀作用导致了岩心孔径的增加, 用扫描电子显微镜(SEM)也验证了溶蚀扩孔作用. CO2气体在微管中具有较高的流速是由于尺度效应和压缩效应的综合反映, 而其在水中溶解引起的界面层水分子扩散速度增大, 导致孔隙壁面的水膜厚度减小, 其水溶液流动的有效孔径增大. 上述两种结果表明, CO2在驱油过程中具有良好的注入能力, 是低渗储层开发过程中能量补充的一种很好的驱替流体, 但也造成其在地层中窜流或散逸的可能性增大.  相似文献   

13.
法文哲  金亚秋 《科学通报》2010,55(32):3097-3101
由太阳风注入月球表面月壤层的氦3(3He)是一种可供核聚变燃料使用的最有价值的月球资源之一. 以Apollo月壤样品为基础, 提出月表面3He含量与月表面归一化太阳风通量、月壤光学成熟度以及TiO2含量之间成线性关系. 中国2007年10月24日首次成功发射的“嫦娥一号”(CE-1)探月卫星在世界上首次载有多通道微波辐射计, 用于测量月表面微波辐射亮度温度(brightness temperature, Tb). 本文根据CE-1观测的多通道Tb数据反演的全月球月壤层厚度, 估算全月球月壤层3He总含量约为6.6×108 kg, 其中月球正面3.7×108 kg, 月球背面2.9×108 kg.  相似文献   

14.
曾招城  雷莉萍  郭丽洁  张丽  张兵 《科学通报》2013,58(5-6):497-497
通过卫星从空间观测全球大气二氧化碳(CO2)浓度为全球碳循环研究提供了新的数据源. 虽然卫星可以进行高密度点观测, 但是由于云和卫星观测模式等影响, 卫星观测点数据在空间上呈不规则分布且存在大量无观测值的空白区域. 精确填补这些空白区域将有利于研究全球和区域大气CO2浓度特征. 地统计学分析方法利用卫星观测的大气CO2数据固有的自相关结构进行插值, 可以解决上述问题. 该分析方法包括两个方面, 通过变异函数探讨数据的相关结构和对空白区域进行最优线性估计, 即克里格插值. 过去的研究通常采用仅考虑了空间相关特征的空间地统计学方法. 然而, 这种空间地统计学方法对存在于CO2数据中的时间相关特征并没有充分考虑.  相似文献   

15.
一种由全球水循环产生的可能重要的CO2   总被引:18,自引:0,他引:18  
刘再华  王海静 《科学通报》2007,52(20):2418-2422
关于全球CO2汇的位置、大小、变化和机制目前仍不确定, 还存有争议. 在理论计算和野外观测数据证明的基础上发现, 可能存在一种由全球水循环产生的重要的CO2汇(以溶解无机碳-DIC的形式). 这个汇达到0.8013 Pg C/a(约占人类活动排放CO2总量的10.1%, 或占所谓的遗漏CO2汇的28.6%), 它是由水对CO2的溶解吸收形成的, 并随着碳酸盐的溶解及水生植物光合作用对CO2的消耗的增加而显著增加. 这部分汇中有0.5188 Pg C/a通过海上降水(0.2748 Pg C/a)和陆地河流(0.244 Pg C/a)进入海洋, 有0.158 Pg C/a再次释放进入大气, 还有0.1245 Pg C/a储存在陆地水生生态系统中. 因此, 净沉降是0.6433 Pg C/a. 随着全球变暖引起的全球水循环的加强、CO2和大气圈中碳酸盐粉尘的增加, 还有造林地区的增多(会引起土壤CO2的增加进而导致水中DIC浓度的增大), 这部分汇也可能增加.  相似文献   

16.
造礁石珊瑚碳酸盐生产不但维系着珊瑚礁的生长, 并且还是大气CO2的重要来源之一. 采用生态调查法首次在国内开展造礁石珊瑚碳酸盐生产力的估算研究, 获得海南三亚鹿回头岸礁区礁坪和礁坡珊瑚平均碳酸盐生产力分别为(1.16 ± 0.55)和(3.52 ± 1.32) kg•m−2•a−1. 珊瑚碳酸盐生产力主要受珊瑚组成、分布以及骨骼生长的属间差异影响. 20世纪60年代以来, 岸礁区日益加剧的人类活动造成珊瑚碳酸盐生产力下降了约80%~89%, 并导致珊瑚礁加积速率降低, 目前已低于现代海平面上升速率. 随着未来海平面持续上升, 鹿回头岸礁的生长模式将可能由过去向海生长为主转变为垂直生长为主, 反映出全球海平面上升背景下, 珊瑚岸礁生物地貌过程对强烈人类活动干扰的响应. 此外, 珊瑚碳酸盐生产力下降还导致碳酸盐生产过程中CO2释放的减少, 未来珊瑚礁区特别是岸礁区可能因为人类活动的增强而改变其在海洋乃至全球碳循环中的地位.  相似文献   

17.
利用355 nm激光闪光光解技术研究了无氧和氧饱和两种条件下三丁基锡与亚硝酸水溶液的紫外光解反应. 实验表明,·OH自由基攻击三丁基锡阳离子(SnBu3+)的正丁基生成SnBu3+·OH 加合物, 其二级生成速率常数为(1.05±0.07)×1010 L·mol-1·s-1. SnBu3+·OH 加合物在无氧时发生一级衰减, 其衰减速率常数为(3.50±0.32)×105 s-1; 氧饱和时, SnBu3+·OH 加合物衰减速率比无氧时要快很多, 表明SnBu3+·OH 加合物能迅速与O2发生反应, 生成SnBu3+·OHO2 加合物. 根据实验结果和动力学推导得到其二级生成速率常数为(6.4±1.3)×108 L·mol-1·s-1.  相似文献   

18.
张蕤  吴敏  王强  耿金菊  杨小弟 《科学通报》2010,55(8):713-717
磷化氢(PH3)是大气和生物圈中广泛存在的活泼性有毒气体. 在我国北极黄河站所在地, 对北极新奥尔松地区的磷化氢分布进行了测试, 并采用静态箱法测试了北极不同区域磷化氢的释放通量. 结果表明, 在北极各个区域均检测到磷化氢, 其浓度范围是16.3~600.2 ng/m3, 最大值出现在苔原区, 海面大气中的磷化氢浓度最低. 北极地区煤矿区不同海拔高度地面大气中均检测到磷化氢, 其浓度范围是65.8~1259 ng/m3, 最大值出现在煤矿中心处. 北极地区不同区域磷化氢的释放通量不同, 保护区释放通量均值为(32.31±5.353) ng/(m2•h), 高于其他区域, 海面大气释放通量最低.  相似文献   

19.
耿安松  熊永强 《科学通报》2000,45(Z1):2695-2698
采用玻璃管真空热解方法,并结合色谱/同位素比值质谱(GC-IRMS) 技术对气源岩热解产物中轻烃碳同位素进行测定.热解产物中大量CO2的存在对CH4碳同位素组成的测定具有明显干扰,初始温度设为-40℃能够有效排除CO2对δ13CCH4测定的影响;另外,加大进样量(二次进样)或通过NaOH溶液吸收CO2有助于C2+轻烃组分δ13C的测定.通过采取上述措施可以获得热解产物中 C1~C7轻烃的碳同位素组成,对气/源对比以及天然气成因的研究具有重要的意义.  相似文献   

20.
李文宝  王汝建  向霏  丁晓辉  赵美训 《科学通报》2010,55(24):2413-2421
南半球中纬度西风带的迁移控制着南大洋深层水通风, 从而驱动大气CO2浓度的变化和全球气候变化. 作为西风带直接控制的锋面, 亚热带锋面(STF)的移动反映了西风带的迁移. 通过南塔斯曼海西部ODP1170站位高分辨率的底栖有孔虫氧同位素(δ18OB)地层和海水表层温度(SST), 及其他站位温度记录和南极冰芯中古气候参数的综合研究, 重建了800 ka以来STF的迁移历史, 以及其与南大洋通风性、冰盖体积大小和大气CO2浓度之间的关系. 南塔斯曼海域800 ka以来的SST平均值为10.2℃, 低于该海域现代年均SST(12℃). 但MIS 1的平均SST最高, 达到11.6℃, 而MIS 4的平均SST最低, 为7.8℃. 最高SST出现在MIS 5, 为14.7℃; 最低的SST出现在MIS 2, 为6.2℃. 在冰期-间冰期旋回中, STF相对于其现代的位置, 向南或北迁移超过3个纬度. 在最暖的MIS 5, STF可能向南迁移到49°S以南; 在最冷的MIS 2, STF可能向北迁移到43°S以北. 在轨道周期上, 西风带的迁移领先于冰盖体积大小变化, 但与南极大气温度同步变化. 当太阳辐射同时影响南极大气和南大洋表层海水温度时, 南大洋SST变化导致STF和西风带迁移. 而STF和西风带的迁移又控制南大洋环流和深层水通风, 从而驱动大气CO2浓度变化. 冰盖体积变化只是大气CO2浓度变化的积极反馈, 而不是独立的驱动力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号