首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
与其他种类的植物细胞不同, 保卫细胞可以反复地进行扩张收缩运动, 进而达成气孔的开放和关闭. 在这个过程中, 调节保卫细胞细胞壁松弛的机理却不清楚. 从蚕豆表皮条中克隆了一个α类扩张蛋白, 并命名为VfEXPA1. VfEXPA1 的表达受暗处理和水淹处理的影响,但光照和ABA 的处理并不改变VfEXPA1 的表达. 进一步, 在烟草中过表达了VfEXPA1.VfEXPA1 过表达植株中蒸腾和光合速率显著增加, 且光诱导的气孔开放速度也大大高于野生型. 实验结果表明, 气孔保卫细胞特异表达的扩张蛋白VfEXPA1 调控了气孔开放过程.  相似文献   

2.
蚕豆气孔保卫细胞中的NOS类蛋白定位及其功能分析   总被引:1,自引:0,他引:1  
刘新  王幼群  贾文锁  娄成后  张蜀秋 《科学通报》2006,51(21):2495-2500
利用免疫荧光显微镜技术和免疫胶体金标记技术确定蚕豆气孔保卫细胞中存在一氧化氮合酶(NOS)类似蛋白, NOS主要分布在气孔保卫细胞的细胞核、细胞质、叶绿体、线粒体以及细胞壁上. 局部灼伤和外源茉莉酸(JA)都能提高蚕豆叶片和表皮NOS活性和一氧化氮(NO)水平, NOS的活性变化与叶片中的NO的变化趋势基本一致; NOS抑制剂L-NAME可抑制JA诱导的NO水平的增加. 由此推测, NOS途径是伤胁迫和JA诱导形成NO的主要途径. 药理学实验表明适当增加Ca2+浓度能够提高叶片NOS的活性和NO的水平, 说明蚕豆叶片NOS活性和NO的分布具有一定的钙依赖性. 保卫细胞中NOS及其催化形成的NO可能通过对气孔运动的调节参与植物对逆境的响应.  相似文献   

3.
《科学通报》2021,66(9):994-1001
气孔作为植物与外界进行碳、水交换的重要器官,将光合作用所需要的二氧化碳导入植物体内,并且通过蒸腾作用将水分散失到大气中.因此,深入了解气孔行为、有效调控气孔开度,对于提高植物的光合作用和水分利用效率具有深远的意义.气孔运动是由离子的运输、积累和释放所驱动的保卫细胞体积变化所引起的.然而,复杂的离子交换机制阻碍了人们对气孔运作机制的深入了解.定量系统的计算生物学分析方法为探索微观离子运输与宏观气孔生理活动之间的联系提供了一种有效的研究手段.通过系统整合保卫细胞离子运输、信号传导和离子稳态平衡等相关信息建立定量动态保卫细胞模型,可以为研究者在细胞和分子层面上对保卫细胞离子运输和气孔行为的研究工作提供有效的指导.本文通过回顾气孔建模工作的发展历程和研究现状,比较了传统经验、半经验的气孔模型和新式计算生物学模型,提出进一步发展气孔计算生物学促进计算生物学在我国农业领域的发展.  相似文献   

4.
一氧化氮参与茉莉酸诱导蚕豆气孔关闭的信号转导   总被引:9,自引:2,他引:7  
用一氧化氮(NO)特异性荧光探针DAF-2DA结合激光共聚焦显微技术证明蚕豆气孔保卫细胞中存在NO. 从以下几个方面证明NO可能参与JA调控气孔运动的信号转导过程: (ⅰ) 外源JA促进叶片气孔保卫细胞NO的合成; (ⅱ) JA和NO都能够诱导气孔关闭, 并具有浓度效应; (ⅲ) 低浓度的NO和JA之间在诱导气孔关闭上存在一定的加合效应; (ⅳ) NO的清除剂PTIO可大大减弱JA诱导蚕豆气孔关闭的作用, 一氧化氮合酶(NOS)抑制剂L-NAME能够抑制JA 诱导的蚕豆气孔关闭效应, 也可以抑制JA诱导保卫细胞中NO的产生. 推测JA处理诱导保卫细胞中NO的产生主要来源于NOS合成途径.  相似文献   

5.
以拟南芥野生型、G蛋白α亚基缺失突变体(gpa1-3,gpa1-4)及带有GFP-α-tubulin-6标记的gpa1突变体等为材料,利用药理学实验、激光共聚焦扫描显微镜观察、非损伤微测等方法研究在ABA诱导气孔运动的信息传递通路中,异三聚体G蛋白与微管骨架之间的功能关系,深入了解气孔运动机理.结果表明:gpa1突变体叶片蒸腾失水率高于野生型.气孔开度实验中,突变体对ABA抑制气孔开放作用不敏感,但微管特异性解聚剂Oryzalin在一定程度上可恢复其对ABA的响应.Ca~(2+)螯合剂BAPTA-AM与Oryzalin共同处理时,无论野生型还是突变体,ABA的作用均会被进一步削弱.激光共聚焦扫描显微镜下观察,ABA处理后,野生型保卫细胞中辐射状规则排布的微管比例急剧下降,解聚态微管大幅度增加;gpa1突变体没有出现如此明显的动态转换,仍多停滞在聚合态.ABA与BAPTA-AM共同处理,野生型植株不同微管排布类型的保卫细胞所占比例随之发生显著改变,gpa1突变体无明显变化.非损伤微测实验发现,突变体中ABA抑制光下保卫细胞Ca~(2+)外流作用不明显,但再加以微管解聚剂Oryzalin处理,Ca~(2+)外流即明显下降.以上结果显示,在G蛋白介导的ABA抑制气孔开放信号通路中,下游有保卫细胞微管骨架和Ca~(2+)的共同参与.  相似文献   

6.
拟南芥保卫细胞微管骨架的重排参与NO诱导的气孔关闭   总被引:3,自引:0,他引:3  
以GFP:α-tubulin-6转基因拟南芥为材料, 利用药理学实验及激光扫描共聚焦显微技术研究了微管骨架在NO诱导气孔关闭过程中的动态变化及其可能的调控机制. 结果表明: (ⅰ) 微管特异性抑制剂长春花碱和NO供体SNP均能诱导气孔关闭, 并且长春花碱能加强SNP对气孔开度的抑制作用, 而微管稳定剂紫杉醇则部分抑制了NO对气孔关闭的诱导作用; (ⅱ) 开放气孔保卫细胞中, 大量周质微管从保卫细胞的背壁向腹壁呈辐射状整齐规则地排布, 并且几乎所有微管纤维都与保卫细胞腹壁成90°垂直; (ⅲ) 同一条件下保卫细胞经外源NO供体SNP光下处理30 min, 保卫细胞内整齐的辐射状微管逐步散乱, 微管部分解聚, 纤维数量减少, 部分交错扭曲, 排布方式也由与腹壁垂直转变为倾斜, 说明微管骨架可能参与了NO诱导的气孔关闭; (ⅳ) 进一步研究发现, 胞内Ca2+螯合剂BAPTA-AM可以大幅度削弱由NO诱导的气孔关闭作用, 而对长春花碱诱导的气孔关闭无明显影响; 开放气孔的保卫细胞经SNP处理后, 再施加BAPTA-AM, 散乱的微管骨架排布随处理时间延长逐步趋于正常, 到30 min时基本恢复成辐射状, 与对照相比无明显区别, 表明在NO对微管排布的调节机制中有Ca2+参与. 综合以上结果推测, 在NO调控的气孔运动中, NO可能是通过调节胞内Ca2+来促进微管骨架系统的重排, 进而影响气孔的开关运动.  相似文献   

7.
气孔保卫细胞微管对质膜上钾离子通道的调节作用   总被引:1,自引:1,他引:1  
利用膜片钳技术探讨了气孔保卫细胞微管对质膜上钾离子通道的可能调节作用。在细胞内分别加入微管解聚剂甲基胺草磷与微管稳定剂紫杉醇均显著地抑制保卫细胞全细胞内向钾电流。结果表明,保卫细胞质膜上内向钾离子通道的正常活性有赖于细胞微管的正常解聚/聚合的动态变化,微管系统对钾离子通道的调节可能是细胞骨架调控气孔运动的生理机理之一。  相似文献   

8.
植物保卫细胞中毒蕈碱型乙酰胆碱受体的定位   总被引:1,自引:1,他引:0  
动物神经传导中的递质乙酰胆碱(ACh)在植物的许多生理过程中起重要作用,但关于植物中乙酰胆碱受体的研究较少。用绿色荧光物质BODIPY FL标记的高亲和性配体ABT对气孔保卫细胞的毒蕈碱型乙酰胆碱受体(mAChR)进行定位研究。发现该受体存在于蚕豆和豌豆的保卫细胞质膜上,蚕豆保卫细胞内部显示出特异的荧光标记,推测该受体可能存在于保卫细胞叶绿体膜上,mAChR在保卫细胞上的定位为ACh调控气孔运动提供了新的可能的信号转导途径。  相似文献   

9.
叶清  朱果利  娄成后 《科学通报》2003,48(3):260-263
电子显微镜观察显示: 蚕豆(V. faba L)叶片气孔开放前后, 保卫细胞液泡(GCV)中颗粒的平均体积下降了约3个数量级, 而分布密度增加了约2个数量级. 同时用激光共聚焦显微术的荧光比值法对气孔开放过程的跟踪测定说明, 在第1个可分辨的气孔开放动作前10 ~ 30 s时GCV的pH有一个约-0.5单位的变化, 一个快速的气孔开放过程紧随其后, 在约100 ~ 200 s的时间内达到稳定的约12 μm的开度. 提出了一个由-ΔpH变化诱导的与GCV 内某些高聚物解聚有关的渗透调节模式. 该模式所描述的渗透调节过程避免了传统“化学渗透”假说所依赖的耗能巨大的逆浓度梯度的跨膜运输, 是对气孔运动的多元调控假说的补充, 同时也为植物中其他快速运动机理的研究拓宽了思路.  相似文献   

10.
刘菁  刘国华  侯丽霞  刘新 《科学通报》2010,55(20):2003-2009
以拟南芥(Arabidopsis thaliana)为实验材料, 用药理学实验、激光共聚焦显微技术和分光光度法研究了保卫细胞胞质pH和一氧化氮(nitric oxide, NO)在乙烯(ethylene, Eth)调控气孔运动信号转导中的作用. 结果表明, 乙烯利和乙烯前体物ACC都能够引起保卫细胞内胞质pH和NO的水平升高; 弱酸(乙酸)以及质膜H+-ATP酶的抑制剂钒酸钠可以逆转乙烯诱导的拟南芥气孔关闭, 同时减弱乙烯所引起的NO含量增加和硝酸还原酶(nitrate reductase, NR)活性的增强; 而NO清除剂cPTIO对胞质pH无显著影响. 可以推测, NO和pH均参与乙烯诱导的拟南芥气孔关闭作用, 且胞质pH的变化(主要由质膜H+-ATPase引起的)可能位于NO (主要由NR途径产生)上游介导这一过程.  相似文献   

11.
席小慧  王攀  王朝阳  于荣 《科学通报》2019,64(1):95-106
以拟南芥WDL3RNA干扰株系(WDL3RNAi)和Tubulin5A-YFP植株等为材料,从叶片的失水率、气孔开度、保卫细胞微管骨架动态排布以及Ca~(2+)流动等不同角度探究在脱落酸(abscisic acid, ABA)诱导的气孔关闭信号通路中,微管结合蛋白WDL3与微管骨架以及Ca~(2+)之间的功能关系,深入了解气孔运动机理.结果表明:(1)相同条件下,WDL3RNAi的叶片蒸腾速率明显慢于野生型.(2)气孔开度实验中,WDL3RNAi对ABA信号比野生型更敏感,气孔关闭更快;微管稳定剂紫杉醇(Paclitaxel)可部分阻碍ABA的作用,微管解聚剂黄草消(Oryzalin)则进一步促进ABA诱导的气孔关闭,但WDL3 RNAi与野生型之间仍存在显著差异;激光共聚焦扫描显微镜观察发现, ABA条件下WDL3 RNAi保卫细胞内微管解聚明显加快,微管成束程度(bundling)显著降低.(3)胞内Ca~(2+)螯合剂BAPTA与ABA共同处理,野生型和WDL3RNAi的气孔关闭均受到不同程度的抑制,关闭减缓,处理前后差异显著.亚细胞结构观察发现, BAPTA阻碍了ABA引起的保卫细胞微管解聚,但WDL3 RNAi与野生型相比,依然维持相对较高的微管解聚比例.此外,非损伤微测技术检测发现,ABA引起的保卫细胞Ca~(2+)内流在WDL3RNAi中较野生型的流速更快,流量加大,显示Ca~(2+)在该信号通路中具有重要作用.综上实验结果表明,微管结合蛋白WDL3通过与微管骨架及Ca~(2+)相互作用参与ABA诱导的气孔关闭过程.  相似文献   

12.
一氧化氮参与水杨酸对蚕豆气孔运动的调控   总被引:7,自引:1,他引:7  
研究了一氧化氮(NO)在水杨酸(SA)诱导蚕豆气孔运动中的作用. 结果表明, 在一定范围内, SA和NO都可诱导气孔关闭. 100 mmol/L SA能够提高保卫细胞胞质中NO的水平, NO清除剂和一氧化氮合酶(NOS)抑制剂都能够降低SA引起的胞质NO的增加. 同时, NO的清除剂PTIO和NOS的抑制剂L-NAME几乎能够完全抵消SA诱导气孔关闭的效应. 推测SA通过NOS途径诱导形成NO, 进而诱导气孔关闭. 鸟氨酸环化酶的抑制剂ODQ和 cADPR的拮抗剂烟碱能够减弱SA和NO诱导气孔关闭的作用. 表明在SA和NO诱导气孔关闭的过程中可能需要有cGMP和cADPR介导.  相似文献   

13.
吕东  王伟  苗琛 《科学通报》2012,(33):3147-3153
植物通过不断进化增强对环境中水分缺乏的抵抗能力.脱落酸在植物干旱和渗透胁迫反应中起到重要的作用.组氨酸激酶也被认为是作为感受子和调节子对水分亏缺作出反应.本研究结果显示,组氨酸激酶1介入了拟南芥脱落酸诱导的气孔信号转导,该酶此前被认为是一种渗透调节因子.ATHK1基因缺失突变体不能表现保卫细胞中正常的脱落酸反应,包括气孔关闭、过氧化氢产生以及钙内流.膜片钳及激光共聚焦结果显示,ATHK1在脱落酸诱导的气孔关闭过程中可能位于过氧化氢下游,并通过调节钙通道和保卫细胞钙震荡来起作用.  相似文献   

14.
已知许多蛋白激酶及蛋白磷酸酶参与了ABA诱导的气孔关闭信号转导过程, 而H2O2是ABA信号转导链的下游信号成分.运用表皮条生物学分析和激光共聚焦扫描技术, 研究促细胞分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)对蚕豆保卫细胞中ABA诱导H2O2产生的调节作用.用MEK1/2专一抑制剂(PD98059)处理蚕豆叶片的下表皮, 抑制了ABA诱导保卫细胞内H2O2的产生和气孔关闭.ABA和H2O2诱导气孔关闭后, 再用PD98059处理, 可以使关闭的气孔重新开放, 与之相对应的是PD98059使ABA诱导的、已增强了的H2O2探针荧光强度降低.而且PD98059不能阻断水杨酸诱导的H2O2的产生及其气孔的关闭, 因此, MEH1/2调节ABA诱导保卫细胞中H2O2产生和积累具有专一性.总之, PD98059通过抑制ABA诱导的H2O2的产生并清除其积累而阻断了ABA诱导的气孔关闭.因此, MAPK的激活在保卫细胞H2O2信号的产生、放大及其专一性应答信号刺激的反应中有着重要的调节作用.  相似文献   

15.
Ca2+/CaM参与乙酰胆碱调控气孔运动的信号转导   总被引:1,自引:0,他引:1  
动物神经递质乙酰胆碱也存在于植物中并参与气孔运动调控. Ca2+/CaM在气孔保卫细胞信号转导中作为第二信使起着重要的作用. 药理学实验证明, 在含Ca2+的介质中, Ca2+通道阻断剂尼群地平及异博定(NIF, Ver)和CaM抑制剂三氟拉嗪(TFP)及W7抑制乙酰胆碱诱导的气孔开放, 但在含K+的介质中不起作用, 推测Ca2+和CaM参与了乙酰胆碱调控气孔运动的信号转导.  相似文献   

16.
蚕豆保卫细胞中类整合蛋白的鉴定   总被引:3,自引:0,他引:3  
整合蛋白(integrins)是一类广泛存在于动物细胞表面的蛋白质。它介导细胞和胞外基质、细胞和细胞之间的黏连,也参与细胞内外的信息传递。以前的研究表明,微管和微丝参与调节气孔的运动。利用人整合蛋白(αvβ3/β5)的多克隆抗体证明类整合蛋白存在于蚕豆保卫细胞,并对其进行了定位。Western免疫印迹结果表明在纯化的蚕豆保卫细胞原生质体的膜碎片中存在类整合蛋白,其分子量分别为47.3,43.7和41.1ku。共聚焦激光扫描显微镜观察表明,类整合蛋白存在于蚕豆保卫细胞质膜上,且主要分布在背壁的细胞膜上,这与保卫细胞和表皮细胞之间的信号转导是一致的。因此,这项研究结果证明类整合蛋白存在于蚕豆保卫细胞的质膜上。  相似文献   

17.
石武良  贾文锁  刘新  张蜀秋 《科学通报》2004,49(16):1617-1622
酪氨酸蛋白磷酸酶(protein tyrosine phosphatases, PTPases)在动物细胞的信号转导中起着非常重要的作用, 但是人们对其在植物细胞中的功能却了解甚少. 在ABA调控气孔运动的信号转导中, H2O2和MAPK都是非常关键的下游信号组分, PTPases是MAPK的重要的调节因子, 而MAPK调节保卫细胞中ABA诱导H2O2的产生. 本研究结果表明, PTPases专一性抑制剂PAO不仅阻止ABA或H2O2诱导的蚕豆气孔关闭, 也可以使ABA或H2O2诱导关闭的气孔重新张开, 说明PTPases可能在H2O2的下游调节ABA诱导的蚕豆气孔关闭过程. PAO和H2O2都可以有效抑制蚕豆表皮细胞PTPases的活性, 加入还原剂DTT不能减弱PAO对PTPases的抑制作用, 但可以解除H2O2对PTPases的抑制作用, 即H2O2可使PTPases发生可逆失活. PAO也可抑制ABA诱导的蚕豆保卫细胞中H2O2的产生. 推测PTPases不仅可以通过调控MAPK来影响ABA诱导的蚕豆保卫细胞中H2O2的产生, 而且还可能作为H2O2信号分子的感受因子, 进一步放大和传递信息, 参与调节气孔的运动.  相似文献   

18.
动物神经递质乙酰胆碱(ACh)也存在于植物体内, 并发挥多种重要生理功能. 一定浓度的ACh可诱导气孔开放. 以Ca2+荧光指示剂Fluo-3AM为探针, 利用激光共聚焦扫描显微镜观察ACh调控气孔运动中保卫细胞胞质Ca2+的动态变化. 结果证明, 外加ACh促使保卫细胞胞质Ca2+的瞬时增加. 毒蕈碱型乙酰胆碱受体(mAChR)的激活剂毒蕈碱与ACh的作用类似, 也能激活胞质Ca2+的瞬时增加; 反之, 毒蕈碱型受体的抑制剂阿托品预处理则抑制ACh诱导的Ca2+增加, 这与动物中mAChR的作用机制类似. 用EGTA螯合胞外Ca2+或用钌红阻断液泡Ca2+的释放, 结果表明ACh诱导的保卫细胞胞质Ca2+增加主要来源于胞内Ca2+库的Ca2+释放. 研究表明, 经过mAChR介导, Ca2+参与保卫细胞响应ACh刺激的信号转导.  相似文献   

19.
细胞壁是植物细胞区别于动物细胞的重要结构特征之一,在植物细胞生长发育和环境响应中发挥重要作用.同时,地球上陆生植物光合作用产物约70%存于细胞壁中,细胞壁生物质是地球上最丰富的可再生资源.植物如何将光合产物合成为细胞壁成分?人类如何有效利用大量的、可再生的细胞壁生物质资源?这些问题近年来受到了广泛的关注.本文对细胞壁合成、利用生物技术对细胞壁生物质进行改造,以及细胞壁生物质利用等研究进行简要介绍和综述.  相似文献   

20.
Ca2+/CaM参与乙酰胆碱调控气孔运动的信号转导   总被引:3,自引:1,他引:3  
动物神经递质乙酰胆碱也存在于植物中并参与气孔运动调控. Ca2+/CaM在气孔保卫细胞信号转导中作为第二信使起着重要的作用. 药理学实验证明, 在含Ca2+的介质中, Ca2+通道阻断剂尼群地平及异博定(NIF, Ver)和CaM抑制剂三氟拉嗪(TFP)及W7抑制乙酰胆碱诱导的气孔开放, 但在含K+的介质中不起作用, 推测Ca2+/和CaM参与了乙酰胆碱调控气孔运动的信号转导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号