首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对基因表达谱数据的高维度、低样本和连续型等特点,提出一种结合邻域互信息和自组织映射进行特征基因选取的方法.首先提出一种改进的Relief算法,对基因进行排序生成候选特征集合;然后提出基于邻域互信息的自组织映射算法对生成的候选特征基因进行聚类;最后利用提出的属性重要性系数从每一类簇中选择代表基因组成特征基因子集.实验结果表明,该方法可以快速有效地选取肿瘤特征基因,能获得较好的分类结果.  相似文献   

2.
基于核的自组织映射聚类   总被引:1,自引:0,他引:1  
将核学习的方法应用于自组织映射聚类中,提出了一种核自组织映射聚类算法.该算法以核函数代替原始数据在特征空间中映射值的内积,并且神经元权值向量的初始化和更新都可由其组合系数向量表示,从而获得了直观而简单的迭代公式.分析了算法中学习速率过高会降低学习稳定性、学习速率过低又会降低收敛速度等参数选择问题,给出了一组折中考虑学习稳定性和收敛速度要求的参数初始值.实验结果表明,核自组织映射聚类对于非椭圆型的类分布数据,如环形数据,聚类正确率也能够达到99.886 4%.对IRIS数据集和入侵检测报警数据的聚类也证明了核自组织映射聚类方法的良好性能.  相似文献   

3.
借鉴邻域粗糙集处理连续型数据的优势,为解决传统谱聚类算法需要人工选取参数的问题,提出基于自适应邻域互信息与谱聚类的特征选择算法。首先,定义各对象在属性下的标准差集合与自适应邻域集,给出自适应邻域熵、平均邻域熵、联合熵、邻域条件熵、邻域互信息等不确定性度量,利用自适应邻域互信息对特征与标签的相关性进行排序。然后,结合共享近邻自适应谱聚类算法,将相关性强的特征聚到同一特征簇内,使不同特征簇内的特征强相异。最后,使用最小冗余最大相关技术设计特征选择算法。在10个数据集上选择特征个数与分类精度的实验结果,验证了所提算法的有效性。  相似文献   

4.
在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上.从提高算法收敛速度和性能出发.提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛两个阶段。并分别采用不同的学习率和邻域函数.采用改进后的SOFM算法对输入样本进行自组织聚类,再利用学习矢量量化(LVQ)算法解决样本分类中的交迭问题。提高了分类精度.仿真实验结果表明.该网络能够识别常用的数字(0~9)和英字母.特别是在有噪声污染的情况下.可以获得较好的效果。  相似文献   

5.
自组织特征映射网络的分析与应用   总被引:1,自引:0,他引:1  
数据挖掘的方法主要包括检索和分类两类,而各自都有缺陷.针对这些缺点提出先利用自组织映射的方法对采集的数据进行聚类和可视化,获得一些关于采集到的数据的初步信息.自组织映射法的目的是一个将高维数据非线性的投到一个预先定义好的二维拓扑中.它通过竞争学习的方法达到了降维、聚类、可视化的目的.  相似文献   

6.
数据挖掘的方法主要包括检索和分类两类,而各自都有缺陷。针对这些缺点提出先利用自组织映射的方法对采集的数据进行聚类和可视化,获得一些关于采集到的数据的初步信息。自组织映射法的目的是一个将高维数据非线性的投到一个预先定义好的二维拓扑中。它通过竞争学习的方法达到了降维、聚类、可视化的目的。  相似文献   

7.
通过构建自组织邻域结构来保持群体多样性,以克服微粒群算法(PSO)易局部收敛的缺点.模拟动物群体趋利避害的行为选择机制,以微粒的适应值择优建立自组织邻域结构的连接.实验结果表明,基于自组织邻域结构的微粒群算法(SONPSO)优于微粒群算法、基于环形结构和动态环形结构的微粒群算法.  相似文献   

8.
改进的自组织特征映射网络及应用   总被引:1,自引:1,他引:0  
在自组织特征映射网络研究的基础上,对其网络结构进行了改进,利用改进后的自组织特征映射网络算法进行油气检测.根据已知井位的油气属性,验证了该方法的有效性,并将其运用于未知井位的油气属性的预测.  相似文献   

9.
为满足模型简化后保留细节特征的需要,引入自组织特征映射(SOFM)神经网络,提出一种基于区域分割的三维几何模型简化算法:将三维几何模型划分成具有不同特征的区域,在此基础上进行多区域并行简化,利用顶点微调法对简化后的模型进行局部特征修正.结果表明,该方法可在提高模型简化速度的同时,有效保留模型的细节特征,显著改善模型因简化而产生的形变.  相似文献   

10.
文章分析了Kohonen的自组织特征映射神经网络的基本特征,讨论了实际应用的技术问题,并给出了算法。将该方法应用于川东地区地层压力剖面分类,结果令人满意。  相似文献   

11.
提出了一种由遗传算法和改进互信息公式相结合的特征选择方法.将遗传算法中的特征评价函数换为改进互信息公式来对特征进行选择,结合了过滤式和封装式这2种特征选择方法的优点.实验部分采用另外2种特征选择算法与本文所提方法分别进行特征选择,将这3种方法所得到的特征子集用于概率神经网络、BP神经网络分类器上,通过比较对应的分类精度,检验各种特征选择方法的效果. 实验结果显示,所提出的特征选择方法能更为有效的实现特征选择,所取得的特征子集具有更好的泛化特性.  相似文献   

12.
一种改进的互信息特征选取预处理算法   总被引:3,自引:1,他引:3  
讨论了基于互信息的特征选取算法在文本分类中的性能问题,分析了利用这种特征选取算法存在分类精度不高的原因,认为互信息为负值的特征在分类中具有很重要的作用.在此基础上提出了一种基于互信息特征选取的改进算法,该算法加强了互信息为负值的特征在分类中的作用.实验结果表明,改进后的算法可以有效地提高文本分类精度。  相似文献   

13.
提出一种第一特征选择的信息论方法.该方法考虑了第一特征和其他特征组合共同包含的类别信息.即使在非线性分类问题中也表现出良好的第一特征选择性能.  相似文献   

14.
由于网络信息的激增,如何充分利用大量的信息,并有效地为Web用户服务成为一个急需解决的问题。相关研究表明利用Web文档聚类的方法可以缩小信息检索的范围,提高查询准确率。通过分析Web文档的特征以及常用Web文档聚类方法的优缺点,提出了一种基于互信息理论的Web文档聚类的方法。在聚类的过程中,计算特征词之间的互信息值,根据阈值判断特征词是否属于同一类别。实验结果表明,该方法与K-Means聚类算法相比较,在准确率和召回率方面均有提高。  相似文献   

15.
基于互信息和文化基因算法的网络流量特征选择   总被引:1,自引:0,他引:1  
利用文化基因框架的引导,提出一种结合了封装和过滤的混合型特征选择算法.该算法在传统的遗传算法中采用了基于互信息的局部搜索算法,全局搜索以分类器精度为适应度函数,保证得到全局最优解;局部搜索以联合互信息为评价指标,加快了寻找最优特征子集的收敛速度.实验表明,与现有算法相比,该算法在特征数量和计算复杂度上有显著改进,采用该算法的网络流量识别方法能以更少的特征获得更高的分类精度.  相似文献   

16.
基于改进互信息的特征提取的文本分类系统   总被引:2,自引:0,他引:2  
文章提出并实现了一种改进互信息的特征提取和支持朴素贝叶斯的文本分类系统,改进的互信息算法加强了负值单词的互信息值,弥补了原来互信息预处理算法的不足,从而提高了分类精度.实验结果表明本算法和系统具有较高的分类准确率。  相似文献   

17.
辅助变量的选取是软测量建模中重要的一步;但由于待选变量数目多、与主导变量非线性相关、信息冗余大等因素导致辅助变量的选择不够合理。在信息熵和互信息理论基础上,改进IBF和MIFS变量筛选算法,综合考虑了辅助变量和主导变量之间的最大相关性,以及辅助变量之间的最小冗余性。作为算例使用改进后的算法,筛选了某燃煤机组运行历史数据,建立了省煤器出口NOx浓度的GA-BP软测量模型。实验证明这种基于互信息的变量筛选方法可以有效提高模型的输出精度和泛化能力。  相似文献   

18.
基于基因算法的信息免疫模型   总被引:1,自引:0,他引:1  
研究Web信息过载的问题,提出一种新的基于基因算法的信息免疫模型(IIM).根据免疫细胞的特异性,利用IIM不同的染色体描述用户需求,并专注于对无关信息的处理,使用户免于该类信息的入侵,并引入了特征选择和信息熵,阈值的选择也是可变的.通过实验与Rocchio方法进行了对比,结果表明,IIM的查准率比Rocchio的高27.5%,查全率比Rocchio的高47.7%.  相似文献   

19.
特征选择在模式识别技术中起着非常重要的作用,用信息论的方法进行特征选择还是一个新课题.MIFS和MIFS-U是两种用信息论方法进行特征选择的近似算法,MIFS和MIFS-U算法都有一个考虑输入特征之间信息冗余的权重系数,MIFS-U算法还有一个条件限制.当条件不满足或权重系数取值不合适时,这两种算法的特征选择性能就会下降.通过研究这两种算法,借助互信息的概念提出一种新的信息论特征选择算法MIFS-D.和MIFS、MIFS-U算法相比,MIFS-D是一种更精确的算法,去掉了限制条件和权重系数.将3种算法应用于几个分类问题,结果表明MIFS-D算法具有相对更好的特征选择性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号