首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Baggiolini  B Dewald 《Experientia》1988,44(10):841-848
Simple testing models have been developed for the evaluation of chemical or biological compounds that modulate the activity of human phagocytes. Human neutrophils from buffy coats of donor blood are used. They are stimulated with receptor agonists, and the effects of test compounds on exocytosis of different enzymes, the generation of superoxide (respiratory burst), and cytotoxicity are quantified. All assays are performed in microtiter plates and the responses are evaluated by multi-well photometry or fluorimetry. The models are apt to detect compounds acting on phagocytes as agonists or antagonists, signal transduction activators or inhibitors and primers of agonist responses, and to assess cytotoxic effects.  相似文献   

2.
Galanin – 25 years with a multitalented neuropeptide   总被引:3,自引:0,他引:3  
Neuroanatomical localization and physiological properties of galanin suggest that the peptide may be involved in the regulation of seizures. Indeed, administration of galanin receptor agonists into brain areas pertinent to the initiation and propagation of epileptic activity attenuated seizure responses under conditions of animal models of epilepsy; pharmacological blocking of galanin receptors exerted proconvulsant effects. Functional deletion of both galanin and galanin type 1 receptor genes produced transgenic mice with either spontaneous seizure phenotype, or with enhanced susceptibility to seizure stimuli. At the same time, overexpression of galanin in seizure pathways, using both transgenic and virus vector transfection techniques, hindered the epileptic process. Galanin exerts anticonvulsant effects through both type 1 and type 2 receptors, with distinct downstream signaling cascades. Several synthetic agonists of galanin receptors with optimized bioavailability have been synthesized and inhibited experimental seizures upon systemic administration, thus opening an opportunity for the development of galanin-based antiepileptic drugs.  相似文献   

3.
Photon emission of phagocytes in relation to stress and disease.   总被引:1,自引:0,他引:1  
E M Lilius  P Marnila 《Experientia》1992,48(11-12):1082-1091
Phagocytes, the first-line cells of the body's defence mechanisms against invading pathogens, kill microorganisms by means of lysosomal degradative enzymes and highly toxic reactive oxygen intermediates. The reactive oxygen compounds are produced, in a process called the 'respiratory burst', by the NADPH oxidase complex in plasma membranes, and by myeloperoxidase in phagolysosomes after degranulation. These processes generate electronically excited states which, on relaxation, emit photons, giving rise to phagocyte chemiluminescence (CL). This paper describes the conditions for the measurement of CL, and reviews the activity of phagocytes from individuals undergoing stress or disease. The capability of phagocytes to emit photons reflects remarkably well the pathophysiological state of the host. In many cases even the magnitude of the stress, the presence of a pathogen in the body, or the activity of the disease can be estimated. Physiological changes, e.g. in the reproductive cycle, can also be predicted.  相似文献   

4.
Phagocytes, the first-line cells of the body's defence mechanisms against invading pathogens, kill microorganisms by means of lysosomal degradative enzymes and highly toxic reactive oxygen intermediates. The reactive oxygen compounds are produced, in a process called the ‘respiratory burst’, by the NADPH oxidase complex in plasma membranes, and by myeloperoxidase in phagolysosomes after degranulation. These processes generate electronically excited states which, on relaxation, emit photons, giving rise to phagocyte chemiluminescence (CL). This paper describes the conditions for the measurement of CL, and reviews the activity of phagocytes from individuals undergoing stress or disease. The capability of phagocytes to emit photons reflects remarkably well the pathophysiological state of the host. In many cases even the magnitude of the stress, the presence of a pathogen in the body, or the activity of the disease can be estimated. Physiological changes, e.g. in the reproductive cycle, can also be predicted.  相似文献   

5.
The effects of 4 carbaryl doses (0.375, 0.75, 1.50 and 3 mg/100 g) on the reticuloendothelial system (RES) phagocytic activity were studied 1 h after their administration to male rats. Carbaryl reduced RES phagocytic activity. Results showed a dose-dependent drop in RES phagocytic activity. Carbaryl might act as an inhibitor of phagocytes by saturing them to greater or lesser degree, depending on the dose administered.  相似文献   

6.
On isolated Rat vas deferens the contracting responses of noradrenaline and dopamine are increased by mescaline (23 micromoles) and decreased by lysergide (15 micromoles). Similarly, on isolated Rat duodenum previously decalcified the hypertonic responses of recalcification are modified in the opposite direction by the two agonists. On the other hand, mescaline such as lysergide increase the fall of tonus which ensues the decalcification of isolated duodenum.  相似文献   

7.
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.  相似文献   

8.
Summary The effects of 4 carbaryl doses (0.375, 0.75, 1.50 and 3 mg/100 g) on the reticuloendothelial system (RES) phagocytic activity were studied 1 h after their administration to male rats. Carbaryl reduced RES phagocytic activity. Results showed a dose-dependent drop in RES phagocytic activity. Carbaryl might act as an inhibitor of phagocytes by saturing them to greater or lesser degree, depending on the dose administered.  相似文献   

9.
The effects of adenosine triphosphate (ATP) on the renal vasculature of isolated kidneys from control, hyper- and hypothyroid rats were characterized. ATP responsiveness was evaluated in basal tone and in raised tone (phenylephrine 10–6 M) preparations. These responses were compared with those obtained with barium chloride or sodium nitroprusside (SNP), used respectively as nonreceptor agonists for vasoconstriction or vasodilation. In preparations at basal tone, ATP produced dose-related vasoconstriction, which was increased in hyperthyroid kidneys, and was severely attenuated in kidneys from hypothyroid rats. In raised tone preparations from control rats ATP produced a dual response: vasoconstriction at low doses, which declined with increasing doses to give way to vasodilator responses; biphasic responses were found in some kidneys. Hyperthroid kidneys showed increased pressor responses and a vasodilator response similar to those seen in kidneys from control rats. However, in hypothyroid kidneys the vasodilator response was abolished. The responses to barium chloride and to SNP were significantly increased and decreased in hyper- and hypothyroid kidneys, respectively; vasoconstrictor responses to SNP were also found in hypothyroid kidneys. Hence the abnormal responses to ATP observed in both thyroid dysfunctions may be partially explained by unspecific alterations in the contractile machinery of the renal vasculature in these kidneys. However, ATP responsiveness (vasoconstriction at low tone and vasodilation at raised tone) was more severely affected in hypothyroid kidneys, suggesting that purinergic (P2X and P2Y) receptor activity may be decreased in these organs.  相似文献   

10.
The development of non-infectious subunit vaccines greatly increases the safety of prophylactic immunization, but also reinforces the need for a new generation of immunostimulatory adjuvants. Because adverse effects are a paramount concern in prophylactic immunization, few new adjuvants have received approval for use anywhere in the developed world. The vaccine adjuvant monophosphoryl lipid A is a detoxified form of the endotoxin lipopolysaccharide, and is among the first of a new generation of Toll-like receptor agonists likely to be used as vaccine adjuvants on a mass scale in human populations. Much remains to be learned about this compound’s mechanism of action, but recent developments have made clear that it is unlikely to be simply a weak version of lipopolysaccharide. Instead, monophosphoryl lipid A’s structure seems to have fortuitously retained several functions needed for stimulation of adaptive immune responses, while shedding those associated with pro-inflammatory side effects. Received 25 April 2008; received after revision 05 June 2008; accepted 10 June 2008  相似文献   

11.
Galanin – 25 years with a multitalented neuropeptide   总被引:2,自引:0,他引:2  
There has been increasing interest in the ability of neuropeptides involved in feeding to modulate circuits important for responses to drugs of abuse. A number of peptides with effects on hypothalamic function also modulate the mesolimbic dopamine system (ventral tegmental area and nucleus accumbens). Similarly, common stress-related pathways can modulate food intake, drug reward and symptoms of drug withdrawal. Galanin promotes food intake and the analgesic properties of opiates; thus it initially seemed possible that galanin might potentiate opiate reinforcement. Instead, galanin agonists decrease opiate reward, measured by conditioned place preference, and opiate withdrawal signs, whereas opiate reward and withdrawal are increased in knock-out mice lacking galanin. This is consistent with studies showing that galanin decreases activity-evoked dopamine release in striatal slices and decreases the firing rate of noradrenergic neurons in locus coeruleus, areas involved in drug reward and withdrawal, respectively. These data suggest that polymorphisms in genes encoding galanin or galanin receptors might be associated with susceptibility to opiate abuse. Further, galanin receptors might be potential targets for development of novel treatments for addiction.  相似文献   

12.
G Lambrecht 《Experientia》1976,32(3):365-367
The hydrochlorides and methiodides of 1-methyl-3- and 4-acetoxypiperidine and their sulphonium analogues are cholinergic agonists. They are substrates for acetylcholinesterase. The sulphonium compounds have a 78(-524)-fold higher activity than its nitrogen analogues.  相似文献   

13.
Ecdysteroid agonist and antagonist activities can be detected and quantified with the Drosophila melanogaster B(II) cell bioassay. This bioassay is convenient, sensitive and robust. We report the assessment with this bioassay of the activities of a wide range of compounds representing a number of classes of natural products. Many compounds were inactive over a wide concentration range (10(-8) to 10(-4) or 10(-3) M) or cytotoxic at high concentrations. However, antagonisitic activity was associated with several classes of compounds: cucurbitacins and withanolides (extending previous findings) and phenylalkanoids and certain alkaloids (described for the first time). A withanolide (withaperuvin D) is identified which possesses agonistic activity. Brassinosteroids, which have been ascribed (ant)agonistic properties in the past, were not found to be active in the B(II) bioassay, either as agonists or antagonists. Possible reasons for the prevalence of antagonists and for the low potency of the majority of them are discussed.  相似文献   

14.
G Karlsson  H R Olpe 《Experientia》1989,45(2):157-158
The GABAB antagonist phaclofen blocked the postsynaptic hyperpolarization induced by the GABAB agonist baclofen during intracellular recordings in rat cortical cells. This effect appears to be selective since responses to GABAA agonists (muscimol, THIP), GABA, 5-HT and L-glutamate were unaffected. Phaclofen also blocked synaptically evoked late inhibitory postsynaptic potentials (late IPSP). These results suggest that the late IPSPs in cortical neurons are mediated by GABA acting on GABAB receptors.  相似文献   

15.
The glycerophosphoinositols are cellular products of phospholipase A2 and lysolipase activities on the membrane phosphoinositides. Their intracellular concentrations can vary upon oncogenic transformation, cell differentiation and hormonal stimulation. Specific glycerophosphodiester phosphodiesterases are involved in their catabolism, which, as with their formation, is under hormonal regulation. With their mechanisms of action including modulation of adenylyl cyclase, intracellular calcium levels, and Rho-GTPases, the glycerophosphoinositols have diverse effects in multiple cell types: induction of cell proliferation in thyroid cells; modulation of actin cytoskeleton organisation in fibroblasts; and reduction of the invasive potential of tumour cell lines. More recent investigations include their effects in inflammatory and immune responses. Indeed, the glycerophosphoinositols enhance cytokine-dependent chemotaxis in T-lymphocytes induced by SDF-1α-receptor activation, indicating roles for these compounds as modulators of T-cell signalling and T-cell responses.  相似文献   

16.
Liver X receptors in cardiovascular and metabolic disease   总被引:5,自引:0,他引:5  
Liver X receptors (LXRs) α and β are nuclear oxysterol receptors and metabolic sensors initially found to regulate cholesterol metabolism and lipid biosynthesis. Recent studies have elucidated the importance of LXR in the development of cardiovascular diseases and metabolic disorders. LXR agonists prevent development of atherosclerosis by modulation of metabolic as well as inflammatory gene expression in rodent models. Moreover, LXR activation inhibits hepatic gluconeogenesis and lowers serum glucose levels, indicating possible application of LXR activation in the treatment of diabetes mellitus. However, first-generation LXR agonists elevate hepatic and serum trigylceride levels, making subtype-specific agonists and selective LXR modulators rather than unselective LXR agonists a potential pharmacological strategy. This review summarizes the multiple physiological and pathophysiological implications of LXRs and observations that identify LXRs as potential targets for therapeutic interventions in human cardiovascular and metabolic disease. Received 30 August 2005; received after revision 10 October 2005; accepted 4 November 2005  相似文献   

17.
Cardiac hypertrophy is an adaptive enlargement of the myocardium in response to altered stress or injury. The cellular responses of cardiomyocytes and non-cardiomyocytes to various signaling pathways should be tightly and delicately regulated to maintain cardiac homeostasis and prevent pathological cardiac hypertrophy. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs that act as regulators of gene expression by promoting the degradation or inhibiting the translation of target mRNAs. Recent studies have revealed expression signatures of miRNAs associated with pathological cardiac hypertrophy and heart failure in humans and mouse models of heart diseases. Increasing evidence indicates that dysregulation of specific miRNAs could alter the cellular responses of cardiomyocytes and non-cardiomyocytes to specific signaling upon the pathological hemodynamic overload, leading to cardiac hypertrophy and heart failure. This review summarizes the cell-autonomous functions of cardiomyocyte miRNAs regulated by different pathways and the roles of non-cardiomyocyte miRNAs in cardiac hypertrophy. The therapeutic effects of a number of miRNAs in heart diseases are also discussed.  相似文献   

18.
19.
Summary The hydrochlorides and methiodides of 1-methyl-3- and 4-acetoxypiperidine and their sulphonium analogues are cholinergic agonists. They are substrates for acetylcholinesterase. The sulphonium compounds have a 78(-524)-fold higher activity than its nitrogen analogues.We thank the German Research Association for support of this work, and MissChristiane Roth for her valuable assistance in carrying out the investigations.  相似文献   

20.
MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号