首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In silico identification of silkworm selenoproteomes   总被引:1,自引:0,他引:1  
Selenium (Se) is an essential trace element in vivo. Its biological function is mainly exerted through selenoproteins. Selenocysteine (Sec), the active site of selenoproteins, is incorporated into the protein at an in-frame TGA codon under the guidance of Sec insertion sequence (SECIS) element in the 3′-untranslated region (UTR) of the gene. In this work, a method was developed and a series of programs were edited by PERL language to in silico identify selenoproteomes from the genome of domesticated silkworm (Bombyx mori). Out of 18510 annotated genes, 6348 was terminated with TGA codons, 249 containing both in-frame TGAs and SECIS elements in the 3′-UTRs. Alignments of those selenoprotein candidates with their cysteine (Cys)-containing homologs revealed that 52 genes had TGA/Cys pairs and similar flanking regions around the in-frame TGAs. Restricted by the patterns of SECIS elements only 5 genes were screened out to fully meet the requirements for selenoproteins. Among them glutathione S-transferase (GST) has been reported as a microbial selenoprotein, the other four are novel selenoproteins annotated as CG6024, CG5195, ATP-binding cassette transporter subfamily A (ABCA), and nuclear VCP-like protein. Derived from the general properties of GST, ABCA and VCP, silkworm selenoproteins may play important roles in redox regulation, Se storage and transportation, as well as cell apoptosis.  相似文献   

2.
Selenocysteine is incorporated cotranslationally at UGA codons, normally read as stop codons, in several bacterial proteins and in the mammalian proteins glutathione peroxidase (GPX), selenoprotein P and Type I iodothyronine 5' deiodinase (5'DI). Previous analyses in bacteria have suggested that a stem-loop structure involving the UGA codon and adjacent sequences is necessary and sufficient for selenocysteine incorporation into formate dehydrogenase and glycine reductase. We used the recently cloned 5'DI to investigate selenoprotein synthesis in eukaryotes. We show that successful incorporation of selenocysteine into this enzyme requires a specific 3' untranslated (3'ut) segment of about 200 nucleotides, which is found in both rat and human 5'DI messenger RNAs. These sequences are not required for expression of a cysteine-mutant deiodinase. Although there is little primary sequence similarity between the 3'ut regions of these mRNAs and those encoding GPX, the 3'ut sequences of rat GPX can substitute for the 5'DI sequences in directing selenocysteine insertion. Computer analyses predict similar stem-loop structures in the 3'ut regions of the 5'DI and GPX mRNAs. Limited mutations in these structures reduce or eliminate their capacity to permit 5'DI translation. These results identify a 'selenocysteine-insertion sequence' motif in the 3'ut region of these mRNAs that is essential for successful translation of 5'DI, presumably GPX, and possibly other eukaryotic selenocysteine-containing proteins.  相似文献   

3.
Type I iodothyronine deiodinase is a selenocysteine-containing enzyme.   总被引:36,自引:0,他引:36  
M J Berry  L Banu  P R Larsen 《Nature》1991,349(6308):438-440
Although thyroxine (3,5,3',5'-tetraiodothyronine, T4) is the principal secretory product of the vertebrate thyroid, its essential metabolic and developmental effects are all mediated by 3,5,3'-triiodothyronine (T3), which is produced from the prohormone by 5'-deiodination. The type-I iodothyronine deiodinase, a thiol-requiring propylthiouracil-sensitive oxidoreductase, is found mainly in liver and kidney and provides most of the circulating T3(1) but so far this enzyme has not been purified. Using expression cloning in the Xenopus oocyte, we have isolated a 2.1-kilobase complementary DNA for this deiodinase from a rat liver cDNA library. The kinetic properties of the protein expressed in transient assay systems, the tissue distribution of the messenger RNA, and its changes with thyroid status, all confirm its identity. We find that the mRNA for this enzyme contains a UGA codon for selenocysteine which is necessary for maximal enzyme activity. This explains why conversion of T4 to T3 is impaired in experimental selenium deficiency and identifies an essential role for this trace element in thyroid hormone action.  相似文献   

4.
K Forchhammer  W Leinfelder  A B?ck 《Nature》1989,342(6248):453-456
During the biosynthesis of selenoproteins in both prokaryotes and eukaryotes, selenocysteine is cotranslationally incorporated into the nascent polypeptide chain through a process directed by a UGA codon that normally functions as a stop codon. Recently, four genes have been identified whose products are required for selenocysteine incorporation in Escherichia coli. One of these genes, selC, codes for a novel transfer RNA species (tRNAUCA) that accepts serine and cotranslationally inserts selenocysteine by recognizing the specific UGA codon. The serine residue attached to this tRNA is converted to selenocysteine in a reaction dependent on functional selA and selD gene products. By contrast, the selB gene product (SELB) is not required until after selenocysteyl-tRNA biosynthesis. Here we present evidence indicating that SELB is a novel translation factor. The deduced amino-acid sequence of SELB exhibits extensive homology with the sequences of the translation initiation factor-2 (IF-2) and elongation factor Tu (EF-Tu). Furthermore, purified SELB protein binds guanine nucleotides in a 1:1 molar ratio and specifically complexes selenocysteyl-tRNAUCA, but does not interact with seryl-tRNAUCA. Thus, SELB could be an amino acid-specific elongation factor, replacing EF-Tu in a special translational step.  相似文献   

5.
Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling photoperiodic time measurement. Here we report that expression in the MBH of the gene encoding type 2 iodothyronine deiodinase (Dio2), which catalyses the intracellular deiodination of thyroxine (T4) prohormone to the active 3,5,3'-triiodothyronine (T3), is induced by light in Japanese quail. Intracerebroventricular administration of T3 mimics the photoperiodic response, whereas the Dio2 inhibitor iopanoic acid prevents gonadal growth. These findings demonstrate that light-induced Dio2 expression in the MBH may be involved in the photoperiodic response of gonads in Japanese quail.  相似文献   

6.
A 6.0 kb DNA fragment related to nikkomycin biosynthesis was cloned from nikkomycin-producingStreptomyces ansochromogenes 7100. Sequence analysis showed that the 1.9 kbTth111 I fragment, a part of the 6.0 kb DNA fragment, contains one complete ORF designatedsanB (GenBank accession No. AF224501), which is composed of 1740 bp encoding a protein consisting of 580 amino acid residues. Its start codon is GTG at 100 bp position and stop codon is TGA at 1840-bp position. Database searching indicated that the deduced protein ofsanB is homologous to the histidinol-phosphate aminotransferase inStreptomyces coelicolor with 31% identities and 47% positives. Gene disruption was performed to study the function ofsanB. It was found that disruptants ofsanB lost the ability to synthesize nikkomycin, which reveals thatsanB is a novel gene essential for nikkomycin biosynthesis.  相似文献   

7.
The computer program RNA Draw was used to identify the secondary structures in the 3′ untranslated regions (3′UTRs) of the mRNAs from 46 eukaryotic selenoproteins among 7 species. The program found one or two possible SECIS elements in these selenoproteins. The SECIS element consists of a stem-loop or hairpin structure with three conserved sequences of AUGA-(A)AA-GA. SECIS element was not found by the RNA Draw program in randomly selected non-selenoproteins. The results showed that SECIS element is the unique character of the genes of eukaryotic selenoproteins. Thus it is possible to use RNA Draw to search the SECIS elements in gene bank for potential new selenoproteins.  相似文献   

8.
Resistance-like sequences have been amplified from first strand cDNA and genomic DNA of rice by PCR using oligonucleotide primers designed from sequence motifs conserved between resistance genes of tobacco andArabidopsis thaliana. 3 PCR clones, designatedOsr1, Osr2 andOsr3 which were 98% identical in nucleotide sequence level, have been found to be significantly homologous to known plant resistance genes and all contained the conserved motifs of NBS-LRR type resistance genes, such as P-loop, kinase2a, kinase3a and transmembrane domain.Southern hybridization revealed that rice resistance gene hornologueswere organized as a cluster in the genome. RFLP mapping using a DH population derived from anindica/japonka cross (Zhaiyeqing 8/Jingxi 17) and an RFLP linkage map assigned two copies ofOsrl and one copy ofOsr3 to the distal position of chromosome 12 where a blast resistance QTL has been mapped previously. Northern blot analysis showed thatOsrl gene was constitutively transcribed in rice leaves, shoots and roots. Further study concerning isolation of full-length cDNAs would be conducive to elucidating the functions of these genes.  相似文献   

9.
Extant genes can be modified, or ‘tinkered with’, to provide new roles or new characteristics of these genes. At the genetic level, this often involves gene duplication and specialization of the resulting genes into particular functions. We investigate how ligand-receptor partnerships evolve after gene duplication. While significant work has been conducted in this area, the examination of additional models should help us better understand the proposed models and potentially reveal novel evolutionary pattern...  相似文献   

10.
大肠杆菌终止密码子前后序列碱基的统计分析   总被引:5,自引:3,他引:2  
统计了大肠杆菌985个基因终止密码子前31个碱基和终止密码子后33个碱基在各个位点的碱基概率分布.发现终止密码子前3个碱基和终止密码子后3个碱基的概率分布与其它位点的概率分布有很大的差别.以TAA结尾的基因序列和以TAG或TGA结尾的基因序列的碱基分布在终止密码子附近也有明显不同.我们又统计了高表达基因和低表达基因终止密码子前后序列的碱基分布,发现在紧邻终止密码子前后3个碱基范围内,某些碱基分布有明显的差别.还发现碱基G和碱基T的3周期分布贯穿整个编码区,碱基A的3周期分布在编码终止区非常明显.  相似文献   

11.
12.
13.
14.
A comparative analysis of the codon usage bias in the newly discovered dUTPase gene (Assigned Accession No.: DQ486149) of the duck enteritis virus (DEV) and the dUTPase gene of 32 reference herpesviruses was performed. The results indicated that the DEV dUTPase gene encodes a protein of 477 amino acids, which includes five conserved motifs with a 3-1-2-4-5 arrangement. The codon adaptation index (CAI), effective number of codons (ENC), and GC3s values indicated synonymous codon usage bias in the dUTPase gene of herpesviruses, and this synonymous bias was correlated with host evolution. The codon usage patterns of the DEV dUTPase gene were phylogenetically conserved and similar to that of the dUTPase genes of the avian alphaherpesvirus. Although codon usage in each microorganism was different, there were no strain-specific differences among them. Sixty-one codons in the predicted polypeptide, with a strong bias towards A and T at the third codon position, were used. Comparison of the codon usage in the dUTPase gene of different organisms revealed that there were 19 codons showing distinct codon usage differences between the DEV and Escherichia coli dUTPase genes; 16 between the DEV and yeast dUTPase genes; and 15 between the DEV and human dUTPase genes. Analysis of variance (ANOVA) showed significant differences between the DEV and yeast dUTPase genes (r = 0.536, P 〈 0.01). The extent of codon usage bias in the DEV dUTPase gene was highly correlated with the gene expression level, therefore the results may provide useful information for gene classification and functional studies.  相似文献   

15.
The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.  相似文献   

16.
A Franzusoff  E Lauzé  K E Howell 《Nature》1992,355(6356):173-175
The transport of proteins destined for post-endoplasmic reticulum locations in the secretory pathway is mediated by small vesicular carriers. Transport vesicles have been generated in cell-free assays from the yeast Saccharomyces cerevisiae, and mammalian systems. Yeast genes encoding cytosolic components that participate in vesicular traffic were first identified from the collection of conditional-lethal sec-(secretory) mutants. Mutations in the yeast SEC7 gene disrupt protein transport in the secretory pathway at the nonpermissive temperature. The SEC7 gene product is a phosphoprotein of relative molecular mass 230,000 that functions from the cytoplasmic aspect of intracellular membranes. We report that in a yeast cell-free transport assay, the introduction of antibodies to Sec7 protein (Sec7p) results in the accumulation of transport vesicles. These vesicles are retrieved with Sec7p-specific antibodies by immuno-isolation for biochemical and electron microscopic characterization. Sec7p on the surface of the accumulated transport vesicles, in combination with previous genetic and biochemical studies, implicate Sec7p as part of a (non-clathrin) vesicle coat. This Sec7p-containing coat structure is proposed to be essential for vesicle budding at multiple stages in the yeast secretory pathway.  相似文献   

17.
Sarcopterygians is an important vertebrate clade that includes crossopterygians and tetrapods. Crossopterygians are lobe-finned fish that include lungfish and coelacanths. Tetrapods include amphibians, reptiles, avians and mammals. To compare the interferon regulatory factor 1 (irf-1) gene structure and to explore phylogenetic relationships among sarcopterygians, we cloned the cDNA sequence of irf-1 from lungfish and compared it with irf-1 orthologs in other sarcopterygian species. The lungfish is a primitive sarcopterygian that occupies a very important position in vertebrate phylogeny. Interferon regulatory factors (IRFs) are a family of proteins involved in innate immunity. To date, 11 IRF family members have been reported. All IRFs share homology in the first 115 amino acids, which encompasses a DNA binding domain containing a characteristic repeat of 5 tryptophan residues separated by 10–18 amino acids. IRF-1 and IRF-2 were the first members of this family to be reported and they have a very important role in innate immunity. However, studies of the irf-1 and irf-2 genes are mostly confined to mammals; very few non-mammalian irf-1 genes have been reported. Consistent with the irf-1 gene sequences already published, the first 345 nucleotides of lungfish irf-1 are highly conserved. At the carboxyl terminal a C-terminal transactivating region motif and an interferon associated domain (IAD2) were identified. 417 million years separate the present from the closest common ancestor of lungfish and tetrapods; however, the irf-1 genes among sarcopterygians are highly conserved and have very obvious phylogenetic relationships. Also the interrelationship tree of sarcopterygians, based on IRF-1 amino acid sequences, is identical with trees produced using other data, such as morphological characteristics or mitochondrial gene sequences.  相似文献   

18.
Secretory-protein translocation into the endoplasmic reticulum (ER) is thought to be catalysed by integral membrane proteins. Genetic selections uncovered three Saccharomyces cerevisiae genes (SEC61, SEC62 and SEC63), mutations in which block import of precursor proteins into the ER lumen in vivo and in vitro. The DNA sequences of SEC62 and SEC63 predict multispanning membrane proteins, and biochemical characterization of the SEC62 protein (Sec62) confirms that it is an integral ER membrane protein. Here we show that Sec61, Sec62 and Sec63 are assembled with two additional proteins into a multisubunit membrane-associated complex. These results confirm previous predictions, based upon genetic interactions between the SEC genes, that Sec61, Sec62 and Sec63 act together to facilitate protein translocation into the ER.  相似文献   

19.
20.
Introduction A large number of species (prokaryotes and eukaryotes) have been used to study the pattern of codon usage bias, and it has also been demonstrated that inter- and intra-genomic variation of the pattern of codon usage is a widespread phenomenon, which may result from various factors. Alternative synonymous codon usage does not modify the amino acid sequence encoded in DNA among species and often among genes from the same genome. It has been suggested that the pattern of codon usag…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号