首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Incorporation of E-cadherin into the adherens junction is a highly regulated process required to establish firm cell-cell adhesion in most epithelia. Less is known about the mechanisms that govern the clearance of E-cadherin from the cell surface in both normal and pathological states. In this study, we found that the steady-state removal of E-cadherin in primary cultured pig thyroid cell monolayers is slow and involves intracellular degradation. Experimental abrogation of adhesion by a Ca2+ switch induces rapid cell surface proteolysis of E-cadherin. At the same time, endocytosed intact E-cadherin and newly synthesized E-cadherin accumulate in intracellular compartments that largely escape further degradation. Acute stimulation with thyroid-stimulating hormone (TSH) or forskolin prevents all signs of accelerated E-cadherin turnover. The findings indicate that TSH receptor signaling via cyclic AMP stabilizes the assembly and retention of E-cadherin at the cell surface. This suggests a new mechanism by which TSH supports maintenance of thyroid follicular integrity.Received 23 February 2004; received after revision 14 May 2004; accepted 26 May 2004  相似文献   

2.
The main components in plasminogen activation include plasminogen, tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), urokinase plasminogen activator receptor (uPAR), and plasminogen activator inhibitors-1 and –2 (PAI-1, PAI-2). These components are subject to extensive regulation and interactions with for example, pericellular adhesion molecules. Although uPA and tPA are quite similar in structure and have common inhibitors and physiological substrates, their physiological roles are distinct. Traditionally, the role of tPA has been in fibrinolysis and that of uPA in cell migration, especially in cancer cells. Recently several targets for tPA/plasmin have been found in neuronal tissues. The functional role of the PAIs is no longer simply to inhibit overexpressed plasminogen activators, and PAI-2 has an unidentified role in the regulation of cell death.Received 2 June 2004; received after revision 30 June 2004; accepted 20 July 2004  相似文献   

3.
This review, regards the low-affinity receptor CD23 as a C-type lectin and compares it with other C-type lectins and C-type lectin-like receptors. C-type lectins such as the asialoglycoprotein receptor, as well as the dendritic cell immunoreceptor and the dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin on dendritic cell lectin, possess amino acid sequences which interact with Ca++ and sugar, and many of them possess an endocytosis signal sequence that includes tyrosine or serine in the cytoplasmic region. In contrast, natural killer receptors lack the Ca++ and sugar-binding amino acids but conserve homologous cysteines in the form of C-type lectin, and possess an immunoreceptor tyrosine-based inhibitory motif in the cytoplasmic region which inhibits killer activity when they recognize the self major histocompatibility (MHC) class I molecule. Since human CD23a form has a similar amino acid sequence, the possibility that this sequence is an endocytosis signal or an ITIM is discussed. The function of the reverse RGD and RGD-binding inhibitory peptide in human CD23 from the point of view of the relation between a C-type lectin and MHC class II molecules is also considered. Received 21 May 2001; received after revision 28 November 2001; accepted 29 November 2001  相似文献   

4.
The integrin family of extracellular matrix receptors regulates many aspects of cell life, in particular cell adhesion and migration. These two processes depend on organization of the actin cytoskeleton into adhesive and protrusive organelles in response to extracellular signals. Integrins are important switch points for the spatiotemporal control of actin-based motility in higher eukaryotes. Ligands of integrin cytoplasmic tails are central elements of signalling pathways involving small GTPases as well as protein and lipid kinases in the regulation of Factin crosslinking, actin treadmilling and de novo nucleation of actin filaments. We present an overview of common pathways and discuss recent evidence for their differential use by individual integrin receptors.Received 24 November 2004; received after revision 17 January 2005; accepted 19 January 2005  相似文献   

5.
After the transfection of -1,3-fucosyltransferase (FucT)-VII cDNA into H7721 human hepatocarcinoma cells, the protein expression of some cyclins, cyclin-dependent kinases (CDKs) and cyclin-dependent kinase inhibitors (CDIs) p16INK4 and p21waf1/Cip1 were unchanged. However, CDI p27Kip1 protein, both the total amount and the amount that bound to CDK2, but not its mRNA, was significantly reduced. The de-inhibited CDK2 stimulated the phosphorylation of retinoblastoma (Rb) protein and facilitated the G1/S transition and growth rate of the cells. The decrease of p27Kip1 protein, the increase of CDK2 activity and Rb phosphorylation, as well as the cell growth and percentage of S phase cells were correlated to the increased amount of cell surface sialyl Lewis X (SLex) antigen in cells with different -1,3-FucT-VII expression. The reduction in p27Kip1 and the difference in its expression among different transfected cells were blocked by the SLex antibody KM93 in a dose-dependent manner, indicating that p27Kip1 expression was influenced by -1,3-FucT-VII and its product SLex. The MEK/MAPK signaling pathway was more important than the PI-3K pathway in the regulation of p27Kip1 expression.Received 5 August 2004; received after revision 25 October 2004; accepted 11 November 2005  相似文献   

6.
In this study with cycloheximide (CHX, an inhibitor of protein synthesis) and the human leukaemic cell line U937, a novel form of chemoresistance, which we termed sudden drug resistance (SDR), was identified using Hoechst33258 staining, Western blott and DNA Ladder. CHXhigh (10–100 g/ml)-induced apoptosis can spontaneously subside after 4–6 h or can be inhibited by short-term preincubation with CHXlow (2.5 g/ml). Unlike typical multidrug resistance, SDR is not caused by reduced drug accumulation or altered protein expression, and may be associated with a non-P-glycoprotein mechanism. To uncover this underlying mechanism, we focused on U937 cell aggregation promoted by CHX, because cell adhesion has been suggested to influence cell survival and prevent apoptosis. EDTA, or anti-CD18 monoclonal antibody, but not EGTA, acetylsalicylic acid or RGDS tetrapeptide, abrogated this homotypic aggregation and greatly increased CHX-induced apoptosis in a time-dependent manner, while fibrinogen and soluble intercellular adhesion molecule-1 exerted opposite effects. These results establish that 2-integrin engagement is a key mediator of SDR, although it may be non-exclusive. This finding supplements the classical basis of chemoresistance and may provide another opportunity for improved leukemia therapy.Received 15 April 2004; received after revision 18 May 2004; accepted 21 June 2004  相似文献   

7.
The concept that atrial natriuretic peptide (ANP) and the closely related peptides BNP and CNP might be involved in the ontogeny of several organ systems emerged in the late 1980s. While many of the reported in vitro actions have not been examined in the context of organ development in vivo, recent studies demonstrate that mice which lack or overexpress natriuretic peptides or receptors exhibit pronounced skeletal growth defects. This article discusses how natriuretic peptides and other factors appear to regulate bone growth as an example of how natriuretic peptides might participate in the ontogeny of other organ systems. Evidence indicating that natriuretic peptides regulate neural development is then reviewed. Natriuretic peptides and receptors exhibit complex expression patterns in the developing nervous system, where they have been shown to act on neural cells as early as at the embryonic neural tube stage. Interestingly, both bone and brain growth appear to utilize primarily CNP and the CNP-specific type B receptor, and perhaps the type C receptor. In vitro data indicate that CNP may act on developing neurons, astrocytes and Schwann cells like a classical growth factor, regulating proliferation, patterning, phenotypic specification, survival and axonal pathfinding. Natriuretic peptides might also have roles in the vascularization of the embryonic brain, establishment of the blood-brain and blood-nerve barriers, and perhaps in nerve regeneration.Received 13 April 2004; received after revision 20 May 2004; accepted 27 May 2004  相似文献   

8.
How retinoids regulate breast cancer cell proliferation and apoptosis   总被引:7,自引:0,他引:7  
Breast cancer still remains a major problem in its incidence, morbidity and mortality; therefore, more effective strategies for its prevention are urgently needed. Retinoids, natural and synthetic derivatives of vitamin A, possess antiproliferative and proapoptotic properties, making them a promising class of chemopreventive agents against breast cancer. The efficacy of all-trans retinoic acid, 9-cis-retinoic acid, LGD1069 (Targretin, bexarotene), and N-(4-hydroxyphenyl)retinamide (fenretinide) as breast cancer chemopreventive agents is being studied. A better understanding of the molecular mechanisms of action of these agents should lead to improvements in their clinical application. In this review, we discuss the mechanisms by which retinoids exert their antiproliferative and apoptotic effects in breast cancer cells.Received 5 January 2004; received after revision 9 February 2004; accepted 12 February 2004  相似文献   

9.
Protein tyrosine phosphatases (PTPs) have been generally recognised as key modulators of cell proliferation, differentiation, adhesion and motility. During signalling, several PTPs undergo two posttranslational modifications that greatly affect their enzymatic activity: tyrosine phosphorylation and cysteine oxidation. Although these modifications share their reversibility depending on the intracellular environment, their effects on enzymatic activity are opposite, tyrosine phosphorylation being correlated to enzyme activation and thiol oxidation to complete inactivation. Several papers have suggested that both these modifications occur in response to the same stimuli i.e. cell proliferation induced by numerous growth factors and cytokines. Conversely, the possibility that these two regulation mechanisms act simultaneously on PTPs has not been established and very few reports investigated this dual regulation of PTPs. To underline the relevance of the question, we discuss several possibilities: (i) that tyrosine phosphorylation and cysteine oxidation of PTPs may share the same target molecules but with different kinetics; (ii) that PTP phosphorylation and oxidation may take place on different subcellular pools of the same protein and (iii) that these two modifications, although having divergent effects on enzyme activity, cooperate in the integrated and coordinated function of PTPs during receptor tyrosine kinase signalling. We believe that our perspective will open new perspectives on an ancient problem – the apparent contradiction of opposing enzymatic regulation of many PTPs – thus clarifying their role as positive or negative transducers (or both) of many extracellular stimuli.Received 11 October 2004; received after revision 26 January 2005; accepted 10 February 2005 Available online 29 March 2005  相似文献   

10.
Physical forces can activate colon cancer cell adhesion, critical for metastasis. Paxillin is phosphorylated by FAK and required for pressure-stimulated adhesion. However, whether paxillin acts as an inert scaffolding protein or whether paxillin phosphorylation is required is unknown. Transfection with paxillin point-phosphorylation mutants demonstrated that phosphorylation at tyrosines 31 and 118 together is necessary for pressure-stimulated adhesion. We further evaluated potential paxillin partners. Reducing the adaptor protein Crk or the focal adhesion protein p130Cas blocked pressure-stimulated adhesion. Furthermore, Crk and p130Cas both displayed increased co-immunoprecipitation with paxillin in response to increased pressure, except in cells transfected with a Y31Y118 paxillin mutant. Inhibiting the small GTPase Rac1 also abolished pressure-stimulated adhesion, and reducing paxillin by siRNA blocked Rac1 phosphorylation by pressure. Thus, paxillin phosphorylation at tyrosines 31 and 118 together is necessary for pressure-induced adhesion. Paxillin, Crk and Cas form a trimeric complex that activates Rac1 and mediates this effect. Received 21 January 2008; received after revision 4 March 2008; accepted 19 March 2008  相似文献   

11.
Acetyl-coenzyme A synthetase (AMP forming)   总被引:1,自引:0,他引:1  
Acetyl-coenzyme A synthetase (AMP forming; Acs) is an enzyme whose activity is central to the metabolism of prokaryotic and eukaryotic cells. The physiological role of this enzyme is to activate acetate to acetyl-coenzyme A (Ac-CoA). The importance of Acs has been recognized for decades, since it provides the cell the two-carbon metabolite used in many anabolic and energy generation processes. In the last decade researchers have learned how carefully the cell monitors the synthesis and activity of this enzyme. In eukaryotes and prokaryotes, complex regulatory systems control acs gene expression as a function carbon flux, with a second layer of regulation exerted posttranslationally by the NAD+/sirtuin-dependent protein acetylation/deacetylation system. Recent structural work provides snapshots of the dramatic conformational changes Acs undergoes during catalysis. Future work on the regulation of acs gene expression will expand our understanding of metabolic integration, while structure/function studies will reveal more details of the function of this splendid molecular machine.Received 4 December 2003; received after revision 2 March 2004; accepted 16 March 2004  相似文献   

12.
Neurofilament proteins in neurodegenerative diseases   总被引:3,自引:0,他引:3  
The function of neurofilaments, the major component in large myelinated neurons, is not well understood even though they were discovered as structures over 100 years ago. Recent studies have suggested that neuro-filaments are closely related to many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson disease Alzheimer disease, and diabetes. Using in vitro assays, cultures and transgenic mice, these studies provided new insights into neurofilament function. The function of each subunit, the relationship of neurofilaments with other cytoskeletal elements and their clinical significance are topics of increasing attention.Received 22 June 2004; received after revision 4 August 2004; accepted 19 August 2004  相似文献   

13.
Cancer stem cells have been hypothesized to drive the growth and metastasis of tumors. Because they need to be targeted for cancer treatment, they have been isolated from many solid cancers. However, cancer stem cells from primary human gastric cancer tissues have not been isolated as yet. For the isolation, we used two cell surface markers: the epithelial cell adhesion molecule (EpCAM) and CD44. When analyzed by flow cytometry, the EpCAM+/CD44+ population accounts for 4.5% of tumor cells. EpCAM+/CD44+ gastric cancer cells formed tumors in immunocompromised mice; however, EpCAM?/CD44?, EpCAM+/CD44? and EpCAM?/CD44+ cells failed to do so. Xenografts of EpCAM+/CD44+ gastric cancer cells maintained a differentiated phenotype and reproduced the morphological and phenotypical heterogeneity of the original gastric tumor tissues. The tumorigenic subpopulation was serially passaged for several generations without significant phenotypic alterations. Moreover, EpCAM+/CD44+, but not EpCAM?/CD44?, EpCAM+/CD44? or EpCAM?/CD44+ cells grew exponentially in vitro as cancer spheres in serum-free medium, maintaining the tumorigenicity. Interestingly, a single cancer stem cell generated a cancer sphere that contained various differentiated cells, supporting multi-potency and self-renewal of a cancer stem cell. EpCAM+/CD44+ cells had greater resistance to anti-cancer drugs than other subpopulation cells. The above in vivo and in vitro results suggest that cancer stem cells, which are enriched in the EpCAM+/CD44+ subpopulation of gastric cancer cells, provide an ideal model system for cancer stem cell research.  相似文献   

14.
HAb18G/CD147 is a heavily glycosylated protein containing two immunoglobulin superfamily domains. Our previous studies have indicated that overexpression of HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca2+ entry by nitric oxide (NO)/cGMP. In the present study, we investigated the structure-function of HAb18G/CD147 by transfecting truncated HAb18G/CD147 fragments into human 7721 hepatoma cells. The inhibitory effect of HAb18G/CD147 on 8-bromo-cGMP-regulated thapsigargin-induced Ca2+ entry was reversed by the expression of either C or N terminus truncated HAb18G/CD147 in T7721C and T7721N cells, respectively. The potential effect of HAb18G/CD147 on metastatic potentials, both adhesion and invasion capacities, of hepatoma cells was abolished in T7721C cells, but not affected in T7721N cells. Release and activation of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were found to be enhanced by the expression of HAb18G/CD147, and this effect was abolished by both truncations. Thapsigargin significantly enhanced release and activation of MMPs (MMP-2 and MMP-9) in non-transfected 7721 cells, and this effect was negatively regulated by SNAP. However, no effects of thapsigargin or SNAP were observed in T7721 cells, and expression of HAb18G/CD147 enhanced secretion and activation of MMPs at a stable and high level. Taken together, these results suggest that both ectodomain and intracellular domains of HAb18G/CD147 are required to mediate the effect of HAb18G/CD147 on the secretion and activation of MMPs and metastasis-related processes in human hepatoma cells by disrupting the regulation of NO/cGMP-sensitive intracellular Ca2+ mobilization although each domain may play different roles.Received 1 April 2004; received after revision 15 June 2004; accepted 22 June 2004  相似文献   

15.
Because expressed at a significant level at the membrane of human T cells, we made the hypothesis that the cellular prion protein (PrPc) could behave as a receptor, and be responsible for signal transduction. PrPc engagement by specific antibodies was observed to induce an increase in cytosolic calcium concentration and led to enhanced activity of Src protein tyrosine kinases. Antibodies to CD4 and CD59 did not influence calcium fluxes or signaling. The effect was maximal after the formation of a network involving avidin and biotinylated antibody to PrPc and was inhibited after raft disruption. PrPc localization was not restricted to rafts in resting cells but engagement was a prerequisite for signaling induction, with concomitant PrPc recruitment into rafts. These results suggest a role for PrPc in signaling pathways, and show that lateral redistribution of the protein into rafts is important for subsequent signal transduction.Received 22 July 2004; received after revision 10 September 2004; accepted 7 October 2004  相似文献   

16.
Apoptosis is a morphologically distinct form of cell death. It is executed and regulated by several groups of proteins. Bcl-2 family proteins are the main regulators of the apoptotic process acting either to inhibit or promote it. More than 20 members of the family have been identified so far and most have two or more isoforms. Alternative splicing is one of the major mechanisms providing proteomic complexity and functional diversification of the Bcl-2 family proteins. Pro- and anti-apoptotic Bcl-2 family members should function in harmony for the regulation of the apoptosis machinery, and their relative levels are critical for cell fate. Any mechanism breaking down this harmony by changing the relative levels of these antagonistic proteins could contribute to many diseases, including cancer and neurodegenerative disorders. Recent studies have shown that manipulation of the alternative splicing mechanisms could provide an opportunity to restore the proper balance of these regulator proteins. This review summarises current knowledge on the alternative splicing products of Bcl-2-related genes and modulation of splicing mechanisms as a potential therapeutic approach.Received 5 January 2004; received after revision 31 March 2004; accepted 6 April 2004  相似文献   

17.
Type II restriction endonucleases are components of restriction modification systems that protect bacteria and archaea against invading foreign DNA. Most are homodimeric or tetrameric enzymes that cleave DNA at defined sites of 4–8 bp in length and require Mg2+ ions for catalysis. They differ in the details of the recognition process and the mode of cleavage, indicators that these enzymes are more diverse than originally thought. Still, most of them have a similar structural core and seem to share a common mechanism of DNA cleavage, suggesting that they evolved from a common ancestor. Only a few restriction endonucleases discovered thus far do not belong to the PD...D/ExK family of enzymes, but rather have active sites typical of other endonuclease families. The present review deals with new developments in the field of Type II restriction endonucleases. One of the more interesting aspects is the increasing awareness of the diversity of Type II restriction enzymes. Nevertheless, structural studies summarized herein deal with the more common subtypes. A major emphasis of this review will be on target site location and the mechanism of catalysis, two problems currently being addressed in the literature.Received 15 November 2004; accepted 9 December 2004  相似文献   

18.
Many have hypothesized that cell death in Parkinsons disease is via apoptosis and, specifically, by the mitochondrial-mediated apoptotic pathway. We tested this hypothesis using a mouse dopaminergic cell line of mesencephalic origin, MN9D, challenged with the Parkinsonism-causing neurotoxin MPP+ (1-methyl-4-phenylpyridinium ion). Apoptosis was the main mode of cell death when the cells were subjected to MPP+ treatment under serum-free conditions for 24 h. Caspase-3 and caspase-9, however, were not activated, thus indicating the existence of alternate or compensatory cell death pathway(s) in dopaminergic neuronal cells. Using caspase inhibitors, we demonstrated that these pathways involve caspase-2, –8, –6 and –7. A time-course study indicated that activation of caspase-2 and –8 occurred upstream of caspase-6 and caspase-7. Upon MPP+ challenge, the apoptosis-inducing factor was translocated from the mitochondria into the MN9D cytosol and nucleus. These results suggest the existence of alternative apoptotic pathways in dopaminergic neurons.Received 20 September 2004; received after revision 5 November 2004; accepted 22 November 2004  相似文献   

19.
N-terminal methionine excision (NME) is the major proteolytic pathway responsible for the diversity of N-terminal amino acids in proteins. Dedicated NME components have been identified in all organisms, in all compartments in which protein synthesis occurs: cytoplasm, plastids and mitochondria. Recent studies have revealed that NME is regulated at various levels and plays an important role in controlling protein turnover. NME is essential in Eubacteria and lower eukaryotes and is the target of many natural and synthetic inhibitors. Such inhibitors have considerable potential for use in the treatment of various human diseases, from cancer to bacterial and parasitic infections.Received 19 December 2003; received after revision 21 January 2004; accepted 4 February 2004  相似文献   

20.
E-selectin, exclusively expressed on activated endothelial cells, is a potential target for site-directed delivery of agents. We and others have shown that sialyl Lewisx-liposomes (sLex-liposomes) are recognized by E-selectin. We now report an approach employing sLex-liposomes to deliver antisense oligonucleotides (AS-ODNs) directed against the adhesion molecule ICAM-1 to activated vascular endothelial cells. ICAM-1 expression was analyzed at the protein level by immunofluorescence and a cell surface ELISA, and at the RNA level by RT-PCR. We have investigated two different AS-ODNs complementary to the 3′ untranslated region and the AUG translation initiation codon of ICAM-1 mRNA. Both inhibited protein expression, but did not influence the mRNA level, pointing to a hybridization of AS-ODNs with the mRNA in the cytoplasm. Our results demonstrate the feasibility of a novel approach for the delivery of agents to activated endothelial cells by glycoliposomes targeted to E-selectin. Received 16 October 2000; revised 29 November 2000; accepted 29 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号