首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
Trigger factor and DnaK cooperate in folding of newly synthesized proteins.   总被引:22,自引:0,他引:22  
The role of molecular chaperones in assisting the folding of newly synthesized proteins in the cytosol is poorly understood. In Escherichia coli, GroEL assists folding of only a minority of proteins and the Hsp70 homologue DnaK is not essential for protein folding or cell viability at intermediate growth temperatures. The major protein associated with nascent polypeptides is ribosome-bound trigger factor, which displays chaperone and prolyl isomerase activities in vitro. Here we show that delta tig::kan mutants lacking trigger factor have no defects in growth or protein folding. However, combined delta tig::kan and delta dnaK mutations cause synthetic lethality. Depletion of DnaK in the delta tig::kan mutant results in massive aggregation of cytosolic proteins. In delta tig::kan cells, an increased amount of newly synthesized proteins associated transiently with DnaK. These findings show in vivo activity for a ribosome-associated chaperone, trigger factor, in general protein folding, and functional cooperation of this protein with a cytosolic Hsp70. Trigger factor and DnaK cooperate to promote proper folding of a variety of E. coli proteins, but neither is essential for folding and viability at intermediate growth temperatures.  相似文献   

3.
Ali MM  Roe SM  Vaughan CK  Meyer P  Panaretou B  Piper PW  Prodromou C  Pearl LH 《Nature》2006,440(7087):1013-1017
Hsp90 (heat shock protein of 90 kDa) is a ubiquitous molecular chaperone responsible for the assembly and regulation of many eukaryotic signalling systems and is an emerging target for rational chemotherapy of many cancers. Although the structures of isolated domains of Hsp90 have been determined, the arrangement and ATP-dependent dynamics of these in the full Hsp90 dimer have been elusive and contentious. Here we present the crystal structure of full-length yeast Hsp90 in complex with an ATP analogue and the co-chaperone p23/Sba1. The structure reveals the complex architecture of the 'closed' state of the Hsp90 chaperone, the extensive interactions between domains and between protein chains, the detailed conformational changes in the amino-terminal domain that accompany ATP binding, and the structural basis for stabilization of the closed state by p23/Sba1. Contrary to expectations, the closed Hsp90 would not enclose its client proteins but provides a bipartite binding surface whose formation and disruption are coupled to the chaperone ATPase cycle.  相似文献   

4.
Kamal A  Thao L  Sensintaffar J  Zhang L  Boehm MF  Fritz LC  Burrows FJ 《Nature》2003,425(6956):407-410
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signalling proteins, including HER-2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells, and the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is currently in phase I clinical trials. However, the molecular basis of the tumour selectivity of Hsp90 inhibitors is unknown. Here we report that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. Tumour Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. These results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.  相似文献   

5.
The mitochondrial chaperonin hsp60 is required for its own assembly   总被引:14,自引:0,他引:14  
M Y Cheng  F U Hartl  A L Horwich 《Nature》1990,348(6300):455-458
Heatshock protein 60 (hsp60) in the matrix of mitochondria is essential for the folding and assembly of newly imported proteins. Hsp60 belongs to a class of structurally related chaperonins found in organelles of endosymbiotic origin and in the bacterial cytosol. Hsp60 monomers form a complex arranged as two stacked 7-mer rings. This 14-mer complex binds unfolded proteins at its surface, then seems to catalyse their folding in an ATP-dependent process. The question arises as to how such an assembly machinery is itself folded and assembled. Hsp60 subunits are encoded by a nuclear gene and translated in the cytosol as precursors which are translocated into mitochondria and proteolytically processed. In both intact cells and isolated mitochondria of the hsp60-defective yeast mutant mif4, self-assembly of newly imported wild-type subunits is not observed. Functional pre-existing hsp60 complex is required in order to form new, assembled, 14-mer. Subunits imported in vitro are assembled with a surprisingly fast half-time of 5-10 min, indicative of a catalysed reaction. These findings are further evidence that self-assembly may not be the principal mechanism by which proteins attain their functional conformation in the intact cell.  相似文献   

6.
Bergman A  Siegal ML 《Nature》2003,424(6948):549-552
An evolutionary capacitor buffers genotypic variation under normal conditions, thereby promoting the accumulation of hidden polymorphism. But it occasionally fails, thereby revealing this variation phenotypically. The principal example of an evolutionary capacitor is Hsp90, a molecular chaperone that targets an important set of signal transduction proteins. Experiments in Drosophila and Arabidopsis have demonstrated three key properties of Hsp90: (1) it suppresses phenotypic variation under normal conditions and releases this variation when functionally compromised; (2) its function is overwhelmed by environmental stress; and (3) it exerts pleiotropic effects on key developmental processes. But whether these properties necessarily make Hsp90 a significant and unique facilitator of adaptation is unclear. Here we use numerical simulations of complex gene networks, as well as genome-scale expression data from yeast single-gene deletion strains, to present a mechanism that extends the scope of evolutionary capacitance beyond the action of Hsp90 alone. We illustrate that most, and perhaps all, genes reveal phenotypic variation when functionally compromised, and that the availability of loss-of-function mutations accelerates adaptation to a new optimum phenotype. However, this effect does not require the mutations to be conditional on the environment. Thus, there might exist a large class of evolutionary capacitors whose effects on phenotypic variation complement the systemic, environment-induced effects of Hsp90.  相似文献   

7.
针对作用在聚合物刷上的键拉力研究表明作用在接枝基面上的力随着聚合物刷接枝密度的增大反而减小,然而尾端单体上的拉伸张力并没有消失.高分子的构象和动力学转变决定了其物性和多种多样的应用,而生物大分子蛋白质作为由二十种不同属性的氨基酸构成的序列,更是具有由其序列所决定的特别的三维自然结构.本文就聚合物刷、聚合物纳米复合材料、聚合物网络等几种高分子体系的构象与动力学过程,及蛋白质构象和其折叠与去折叠的动力学过程做了介绍.特别是蛋白质的折叠与去折叠速率在单分子操纵实验中受到拉力的调控,通过测量这种拉力依赖的动力学过程、蛋白质的自由能曲面和折叠去折叠路径可以得到系统全面的研究.本文以肌肉蛋白titin的免疫球蛋白结构域I27为例对蛋白质折叠研究进行了阐述.  相似文献   

8.
H Blumberg  P A Silver 《Nature》1991,349(6310):627-630
Heat-shock proteins have been implicated in assembly of protein complexes, correct protein folding and uptake of proteins into organelles. In Escherichia coli, the heat-shock protein DnaJ and the Hsp70 homologue, DnaK, act together to disassemble a protein complex involved in bacteriophage lambda replication. We report the identification of SCJ1, a gene in the yeast Saccharomyces cerevisiae that encodes a homologue of the bacterial DnaJ protein. SCJ1 was identified by a genetic screen in which increased expression of candidate genes results in missorting of a nuclear-targeted test protein. The predicted amino-acid sequence of SCJ1 is 37% identical to the entire E. coli DnaJ protein. Hybridization experiments indicate that there is a family of yeast genes related to SCJ1. These findings suggest that the Hsp70 DnaK-DnaJ interaction is general to eukaryotes.  相似文献   

9.
Hsp90 as a capacitor of phenotypic variation   总被引:70,自引:0,他引:70  
Queitsch C  Sangster TA  Lindquist S 《Nature》2002,417(6889):618-624
Heat-shock protein 90 (Hsp90) chaperones the maturation of many regulatory proteins and, in the fruitfly Drosophila melanogaster, buffers genetic variation in morphogenetic pathways. Levels and patterns of genetic variation differ greatly between obligatorily outbreeding species such as fruitflies and self-fertilizing species such as the plant Arabidopsis thaliana. Also, plant development is more plastic, being coupled to environmental cues. Here we report that, in Arabidopsis accessions and recombinant inbred lines, reducing Hsp90 function produces an array of morphological phenotypes, which are dependent on underlying genetic variation. The strength and breadth of Hsp90's effects on the buffering and release of genetic variation suggests it may have an impact on evolutionary processes. We also show that Hsp90 influences morphogenetic responses to environmental cues and buffers normal development from destabilizing effects of stochastic processes. Manipulating Hsp90's buffering capacity offers a tool for harnessing cryptic genetic variation and for elucidating the interplay between genotypes, environments and stochastic events in the determination of phenotype.  相似文献   

10.
Yang WY  Gruebele M 《Nature》2003,423(6936):193-197
Many small proteins seem to fold by a simple process explicable by conventional chemical kinetics and transition-state theory. This assumes an instant equilibrium between reactants and a high-energy activated state. In reality, equilibration occurs on timescales dependent on the molecules involved, below which such analyses break down. The molecular timescale, normally too short to be seen in experiments, can be of a significant length for proteins. To probe it directly, we studied very rapidly folding mutants of the five-helix bundle protein lambda(6-85), whose activated state is significantly populated during folding. A time-dependent rate coefficient below 2 micro s signals the onset of the molecular timescale, and hence the ultimate speed limit for folding. A simple model shows that the molecular timescale represents the natural pre-factor for transition state models of folding.  相似文献   

11.
V A Lewis  G M Hynes  D Zheng  H Saibil  K Willison 《Nature》1992,358(6383):249-252
The murine t-complex encodes t-complex polypeptide-1 (TCP1), which is constitutively expressed in almost all cells, and upregulated during spermatogenesis. Mammalian sequences have greater than 96% identity with each other, and greater than 60% identity with Drosophila melanogaster and yeast orthologues. TCP1 is essential in yeast, and is postulated to be the cytosolic mammalian equivalent of groEL. We report here that, in the native state, murine and human TCP1 is distributed throughout the cytosol as an 800K-950K hetero-oligomeric particle in association with four to six unidentified proteins and two Hsp70 heat-shock proteins. Negative-stain electron microscopy indicates that the structure is two stacked rings, 12-16 nm in diameter. Therefore, despite similarities with the chaperonin 60 proteins, these data indicate that TCP1 is biochemically and structurally unique. We suggest that TCP1 may represent one of a family of molecules in the eukaryotic cytosol involved in protein folding and regulated in part by their heteromeric associations.  相似文献   

12.
Y Zhou  M Karplus 《Nature》1999,401(6751):400-403
The detailed mechanism of protein folding is one of the major problems in structural biology. Its solution is of practical as well as fundamental interest because of its possible role in utilizing the many sequences becoming available from genomic analysis. Although the Levinthal paradox (namely, that a polypeptide chain can find its unique native state in spite of the astronomical number of configurations in the denatured state) has been resolved, the reasons for the differences in the folding behaviour of individual proteins remain to be elucidated. Here a Calpha-based three-helix-bundle-like protein model with a realistic thermodynamic phase diagram is used to calculate several hundred folding trajectories. By varying a single parameter, the difference between the strength of native and non-native contacts, folding is changed from a diffusion-collision mechanism to one that involves simultaneous collapse and partial secondary-structure formation, followed by reorganization to the native structure. Non-obligatory intermediates are important in the former, whereas there is an obligatory on-pathway intermediate in the latter. Our results provide a basis for understanding the range of folding behaviour that is observed in helical proteins.  相似文献   

13.
Sugase K  Dyson HJ  Wright PE 《Nature》2007,447(7147):1021-1025
  相似文献   

14.
(Mg-ATP)-dependent self-assembly of molecular chaperone GroEL   总被引:7,自引:0,他引:7  
The important Escherichia coli heat-shock protein GroEL of relative molecular mass 57,259 is a typical molecular chaperone. It possesses ATPase activity and interacts in ATP-driven reactions with non-folded proteins to stimulate their correct folding and/or assembly by preventing the formation of improper protein structures or aggregates. As GroEL is isolated and functions as a 20-25S tetradecameric particle (GroELp), the question arises--what is the mechanism of its own assembly? Here we show the (Mg-ATP)-dependent self-stimulation ('self-chaperoning') in vitro of GroELp reassembly from its monomeric state.  相似文献   

15.
K Oh  K S Jeong  J S Moore 《Nature》2001,414(6866):889-893
The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control molecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner, but it remains challenging to design these so-called 'foldamers' so that they are capable of inducing or controlling chemical processes and interactions. Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules, but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.  相似文献   

16.
Bowie JU 《Nature》2005,438(7068):581-589
One of the great challenges for molecular biologists is to learn how a protein sequence defines its three-dimensional structure. For many years, the problem was even more difficult for membrane proteins because so little was known about what they looked like. The situation has improved markedly in recent years, and we now know over 90 unique structures. Our enhanced view of the structure universe, combined with an increasingly quantitative understanding of fold determination, engenders optimism that a solution to the folding problem for membrane proteins can be achieved.  相似文献   

17.
I Braakman  J Helenius  A Helenius 《Nature》1992,356(6366):260-262
Being topologically equivalent to the extracellular space, the lumen of the endoplasmic reticulum (ER) provides a unique folding environment for newly synthesized proteins. Unlike other compartments in the cell where folding occurs, the ER is oxidizing and therefore can promote the formation of disulphide bonds. The reducing agent dithiothreitol, when added to living cells, inhibits disulphide formation with profound effects on folding. Taking advantage of this effect, we demonstrate here that folding of influenza haemagglutinin is energy dependent. Metabolic energy is required to support the correct folding and disulphide bond formation in this well characterized viral glycoprotein, to rescue misfolded proteins from disulphide-linked aggregates, and to maintain the oxidized protein in its folded and oligomerization-competent state.  相似文献   

18.
蛋白质构象与折叠行为的研究   总被引:3,自引:0,他引:3  
蛋白质结构预测与蛋白质折叠是生命科学研究的核心问题之一,也是后基因时代推动生物学朝着定量化发展的重要方向之一,它是分子生物学中心法则还没有解决的一个重大生物学问题.简单介绍了蛋白质分子的结构特点,讨论了蛋白质分子构象研究的重点,即蛋白质结构预测与蛋白质折叠.重点介绍了拥挤环境对蛋白质构象的影响和蛋白质分子的力学性质,这是蛋白质分子构象研究的深入.这些介绍可以帮助我们更清楚地认识蛋白质分子.  相似文献   

19.
K Lang  F X Schmid 《Nature》1988,331(6155):453-455
Two enzymes are now known that catalyse slow steps in protein folding. Peptidyl-prolyl cis-trans isomerase catalyses the cis-trans isomerization of Xaa-Pro peptide bonds in oligopeptides and during the refolding of several proteins. The other enzyme, protein-disulphide isomerase, accelerates the reactivation of reduced proteins, presumably by catalysis of thiol-disulphide exchange reactions. Recent evidence indicates that the beta-subunit of prolyl 4-hydroxylase, an enzyme involved in collagen biosynthesis, is identical with disulphide isomerase. On the basis of this important finding, it was suggested that disulphide isomerase accelerates protein folding, not by 'reshuffling' incorrect disulphide bonds, but in the same way as prolyl isomerase by catalysing proline isomerization which is known to be important for the folding of collagen and other proteins. Here we show that the catalytic activities of these two enzymes are different. Disulphide isomerase accelerates the reformation of native disulphide bonds during protein reoxidation. We find no evidence that this enzyme can catalyse the isomerization of proline peptide bonds, a reaction efficiently accelerated by prolyl isomerase. When both enzymes are present simultaneously during protein folding, they act independently of one another.  相似文献   

20.
Absolute comparison of simulated and experimental protein-folding dynamics   总被引:7,自引:0,他引:7  
Snow CD  Nguyen H  Pande VS  Gruebele M 《Nature》2002,420(6911):102-106
Protein folding is difficult to simulate with classical molecular dynamics. Secondary structure motifs such as alpha-helices and beta-hairpins can form in 0.1-10 micros (ref. 1), whereas small proteins have been shown to fold completely in tens of microseconds. The longest folding simulation to date is a single 1- micro s simulation of the villin headpiece; however, such single runs may miss many features of the folding process as it is a heterogeneous reaction involving an ensemble of transition states. Here, we have used a distributed computing implementation to produce tens of thousands of 5-20-ns trajectories (700 micros) to simulate mutants of the designed mini-protein BBA5. The fast relaxation dynamics these predict were compared with the results of laser temperature-jump experiments. Our computational predictions are in excellent agreement with the experimentally determined mean folding times and equilibrium constants. The rapid folding of BBA5 is due to the swift formation of secondary structure. The convergence of experimentally and computationally accessible timescales will allow the comparison of absolute quantities characterizing in vitro and in silico (computed) protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号