首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choi I  Aalkjaer C  Boulpaep EL  Boron WF 《Nature》2000,405(6786):571-575
Two electroneutral, Na+-driven HCO3- transporters, the Na+-driven Cl-/HCO3- exchanger and the electroneutral Na+/HCO3- cotransporter, have crucial roles in regulating intracellular pH in a variety of cells, including cardiac myocytes, vascular smooth-muscle, neurons and fibroblasts; however, it is difficult to distinguish their Cl- dependence in mammalian cells. Here we report the cloning of three variants of an electroneutral Na+/HCO3- cotransporter, NBCn1, from rat smooth muscle. They are 89-92% identical to a human skeletal muscle clone, 55-57% identical to the electrogenic NBCs and 33-43% identical to the anion exchangers. When expressed in Xenopus oocytes, NBCn1-B (which encodes 1,218 amino acids) is electroneutral, Na+-dependent and HCO3(-)-dependent, but not Cl(-)-dependent. Oocytes injected with low levels of NBCn1-B complementary RNA exhibit a Na+ conductance that 4,4-diisothiocyanatostilbene-2,2'-disulphonate stimulates slowly and irreversibly.  相似文献   

2.
W H Moolenaar  L G Tertoolen  S W de Laat 《Nature》1984,312(5992):371-374
There is now good evidence that cytoplasmic pH (pHi) may have an important role in the metabolic activation of quiescent cells. In particular, growth stimulation of mammalian fibroblasts leads to a rapid increase in pHi (refs 3-6), due to activation of a Na+/H+ exchanger in the plasma membrane, and this alkalinization is necessary for the initiation of DNA synthesis. However, the mechanism by which mitogens activate the Na+/H+ exchanger to raise pHi is not known, although an increase in cytoplasmic free Ca2+ ([Ca2+]i) has been postulated as the primary trigger. We now present data suggesting that the Na+/H+ exchanger is set in motion through protein kinase C, a phospholipid- and Ca2+-dependent enzyme normally activated by diacylglycerol produced from inositol phospholipids in response to external stimuli. Using newly developed pH microelectrodes and fluorimetric techniques, we show that a tumour promoting phorbol ester and synthetic diacylglycerol, both potent activators of kinase C (refs 12-15), mimic the action of mitogens in rapidly elevating pHi in different cell types. Furthermore, we demonstrate that, contrary to previous views, an early rise in [Ca2+]i is not essential for the activation of Na+/H+ exchange and the resultant increase in pHi. Finally, we suggest that an alkaline pHi shift, mediated by Na+/H+ exchange, may be a common signal in the action of those hormones which elicit the breakdown of inositol phospholipids.  相似文献   

3.
W F Boron  E Hogan  J M Russell 《Nature》1988,332(6161):262-265
The regulation of intracellular pH (pHi) is essential for normal cell function, and controlled changes in pHi may play a central role in cell activation. Sodium-dependent Cl-HCO3 exchange is the dominant mechanism of pHi regulation in the invertebrate cells examined, and also occurs in mammalian cells. The transporter extrudes acid from the cell by exchanging extracellular Na+ and HCO3- (ref. 9) (or a related species) for intracellular Cl- (refs 3, 4). It is blocked by the stilbene derivatives DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonate, ref. 10) and SITS (4-acetamido-4'-isothiocyano-stilbene-2,2'-disulphonate, ref. 3), and has a stoichiometry of two intracellular H+ neutralized for each Na+ taken up and each Cl- extruded by the axon. Because the inwardly-directed Na+ concentration gradient is sufficiently large to energize both the HCO3- influx and Cl- efflux, this electroneutral exchanger could be a classic secondary active transporter, thermodynamically independent of ATP hydrolysis. However, at least in the squid axon, the exchanger has an absolute requirement for ATP (ref. 3). Thus, a major unresolved issue is whether this Na-dependent Cl-HCO3 exchanger stoichiometrically hydrolyses ATP (the pump hypothesis), or whether ATP activates the transporter by a mechanism such as phosphorylation or simple binding (the activation hypothesis). We have now explored the role of ATP in pHi regulation by dialysing axons with the ATP analogue ATP-gamma-S. In many systems, ATP-gamma-S is an acceptable substrate for protein kinases, whereas the resulting thiophosphorylated proteins are not as readily hydrolysed by phosphatases as are phosphorylated proteins. Our results rule out the pump hypothesis, and show that the basis of the axon's ATP requirement is the pH-dependent activation (by, for instance, phosphorylation or ATP binding) of the exchanger itself, or of an essential activator.  相似文献   

4.
A M Paradiso  R Y Tsien  T E Machen 《Nature》1987,325(6103):447-450
Cytosolic pH (pHi) is a critically regulated determinant of intracellular function. Several mechanisms for pHi regulation in different tissues have been found, such as direct proton pumping, Na/H exchange, Cl/HCO3 exchange, NaHCO3 cotransport, and Na/H/Cl/HCO3 obligatorily linked. All these studies have used either single cells or cell populations assumed to be behaving homogeneously. Most tissues consist of more than one cell type, so it would be desirable to examine pHi regulation simultaneously in many identified individual cells, particularly in epithelia where disaggregation and purification of isolated cells destroys the normal distinction between luminal and serosal environments. We have used a pH-sensitive fluorescent dye, BCECF (2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein) and digital image processing to study pHi regulation simultaneously in the oxyntic cells (OC) and chief cells (CC) of gastric glands isolated from rabbit stomach. CCs become markedly more acidic upon removal of external Na (Nao), but pHi is restored rapidly on return to normal Nao, with or without Cl. Oxyntic cell pHi is much less affected by Nao. Conversely, OCs become strongly more alkaline on removal of external Cl (Clo), pHi being restored when Clo is replaced with or without Na, whereas CCs are relatively insensitive to Clo. Therefore, Na/H exchange is dominant over Cl/HCO3 exchange in CCs, but in the neighbouring OCs, Cl/HCO3 outweighs the Na/H mechanism, a heterogeneity that correlates with the functions of the two cell types.  相似文献   

5.
随着黄鼠湾-何家庄的工业园区发展,周边生态环境受到了影响。地下水作为生态重要组成部分,研究地下水水化学特征对该地区地下水保护和生态建设具有重要意义。因此,本文2019年在黄鼠湾-何家庄河谷区采集29组水样进行检测分析,运用经典统计学、Piper三线图、Gibbs图、主要离子浓度关系图等方法,对地下水特征及成因进行分析。结果表明:(1)优势阳离子为钙(Ca2+)、镁(Mg2+)、钠(Na+)。优势阴离子为碳酸氢(HCO3-)、硫酸根(SO42-)、氯(Cl-)。(2)研究区水化学类型分为三类。HCO3?Cl-Ca?Na?Mg类、HCO3-Mg?Na?Ca类均分布在研究区上游。HCO3?SO4-Mg?Na?Ca类分布于研究区中游与下游。(3)阳离子受蒸发浓缩、岩石风化与离子交换作用影响。阴离子受岩石风化作用影响。研究区Na+、K+、Cl-主要来源于岩盐与硅酸盐的溶解, Ca2+、Mg2+、HCO-3、SO2-4主要来源于碳酸盐、硅酸盐和蒸发岩的溶解。Ca2+、Na+受到阳离子交换作用影响。过高的K+、Na+、SO42-与人类工业活动有关。  相似文献   

6.
K Kaila  J Voipio 《Nature》1987,330(6144):163-165
Synaptic inhibition mediated by gamma-aminobutyric acid (GABA) is known to involve opening of receptor-gated chloride channels. Recent evidence indicates that these channels also show a significant permeability to the physiologically important bicarbonate anion. In all the excitable cells studied to date, the intracellular pH (pHi) is higher than would be predicted from a passive distribution of H+ ions, and consequently there is an outwardly directed electrochemical driving force for HCO3-. In the presence of CO2/HCO3- therefore, activation of GABA-gated channels could give rise to a significant efflux of bicarbonate, leading to a fall in postsynaptic pHi. We have examined the influence of GABA on pHi in crayfish skeletal muscle and we find that in the presence of CO2, GABA induces a dramatic fall in pHi which is coupled to an alkalosis at the extracellular surface. This fall in pHi and the extracellular alkalosis are attributable to a GABA-activated, picrotoxin-sensitive HCO3--conductance. In view of the sensitivity of ion channels and intracellular ion concentrations to changes in pHi, a GABA-induced postsynaptic acidosis could prove to be important in the modulation of inhibitory transmission.  相似文献   

7.
L Reuss 《Nature》1983,305(5936):723-726
In NaCl-absorbing epithelia such as proximal renal tubule, small intestine and gallbladder, Na+-dependent Cl- entry across the luminal membrane is an electroneutral transport process that has been attributed to Na-Cl symport, Na-K-Cl symport, or a double (Na-H, Cl-HCO3) antiport. At the basolateral (antiluminal) membrane, Na+ extrusion can be attributed to the Na+-K+ pump, and Cl- transport could be explained in principle by electrodiffusion since the intracellular Cl- activity is higher than predicted for equilibrium distribution. However, in Necturus gallbladder, as in other epithelia, the electrodiffusional Cl- permeability of the membrane (PCl) is too low to account for the transepithelial Cl- transport rate. Because K+ is at a higher chemical potential in the cell than in the extracellular fluid, and because serosal Cl- substitutions have only small effects on membrane potential, the hypothesis of carrier-mediated electroneutral KCl co-transport was proposed. The experiments reported here were designed to test this hypothesis in Necturus gallbladder epithelium. Intracellular Cl- and K+ activities (aCli, aKi) were measured with ion-sensitive intracellular microelectrodes before, during and after ionic substitutions of the serosal (basolateral) bathing medium. The results demonstrate a Na+-independent basolateral membrane KCl symport.  相似文献   

8.
Choi JY  Muallem D  Kiselyov K  Lee MG  Thomas PJ  Muallem S 《Nature》2001,410(6824):94-97
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Initially, Cl- conductance in the sweat duct was discovered to be impaired in CF, a finding that has been extended to all CFTR-expressing cells. Subsequent cloning of the gene showed that CFTR functions as a cyclic-AMP-regulated Cl- channel; and some CF-causing mutations inhibit CFTR Cl- channel activity. The identification of additional CF-causing mutants with normal Cl- channel activity indicates, however, that other CFTR-dependent processes contribute to the disease. Indeed, CFTR regulates other transporters, including Cl(-)-coupled HCO3- transport. Alkaline fluids are secreted by normal tissues, whereas acidic fluids are secreted by mutant CFTR-expressing tissues, indicating the importance of this activity. HCO3- and pH affect mucin viscosity and bacterial binding. We have examined Cl(-)-coupled HCO3- transport by CFTR mutants that retain substantial or normal Cl- channel activity. Here we show that mutants reported to be associated with CF with pancreatic insufficiency do not support HCO3- transport, and those associated with pancreatic sufficiency show reduced HCO3- transport. Our findings demonstrate the importance of HCO3- transport in the function of secretory epithelia and in CF.  相似文献   

9.
Reddy MM  Quinton PM 《Nature》2003,423(6941):756-760
Cystic fibrosis is caused by mutations in cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel. Phosphorylation and ATP hydrolysis are generally believed to be indispensable for activating CFTR. Here we report phosphorylation- and ATP-independent activation of CFTR by cytoplasmic glutamate that exclusively elicits Cl-, but not HCO3-, conductance in the human sweat duct. We also report that the anion selectivity of glutamate-activated CFTR is not intrinsically fixed, but can undergo a dynamic shift to conduct HCO3- by a process involving ATP hydrolysis. Duct cells from patients with DeltaF508 mutant CFTR showed no glutamate/ATP activated Cl- or HCO3- conductance. In contrast, duct cells from heterozygous patients with R117H/DeltaF508 mutant CFTR also lost most of the Cl- conductance, yet retained significant HCO3- conductance. Hence, not only does glutamate control neuronal ion channels, as is well known, but it can also regulate anion conductance and selectivity of CFTR in native epithelial cells. The loss of this uniquely regulated HCO3- conductance is most probably responsible for the more severe forms of cystic fibrosis pathology.  相似文献   

10.
Cystic fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase and protein kinase C. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2(+)-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2(+)-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.  相似文献   

11.
Y Kanai  M A Hediger 《Nature》1992,360(6403):467-471
  相似文献   

12.
Plasticity of functional epithelial polarity   总被引:9,自引:0,他引:9  
G J Schwartz  J Barasch  Q Al-Awqati 《Nature》1985,318(6044):368-371
The fundamental characteristics that allow vectorial transport across an epithelial cell are the differential sorting and insertion of transport proteins either in the apical or the basolateral plasma membrane, and the preferential association of endocytosis and exocytosis with one or the other pole of the cell. Asymmetrical cellular structure and function, being manifestations of terminal differentiation, might be expected to be predetermined and invariant. Here we show that the polarity of transepithelial H+ transport, endocytosis and exocytosis in kidney can be reversed by environmental stimuli. The HCO3- secreting cell in the cortical collecting tubule is found to be an intercalated cell possessing a Cl-/HCO3- exchanger in the apical membrane and proton pumps in endocytic vesicles that fuse with the basolateral membrane; the H+-secreting cell in the medullary collecting tubule has these transport functions on the opposite membranes. Further, the HCO3- -secreting cell can be induced to change its functional polarity to that of the H+-secreting cell by acid-loading the animal.  相似文献   

13.
A long-standing paradox in cellular immunology concerns the conditional requirement for CD4+ T-helper (T(H)) cells in the priming of cytotoxic CD8+ T lymphocyte (CTL) responses in vivo. Whereas CTL responses against certain viruses can be primed in the absence of CD4+ T cells, others, such as those mediated through 'cross-priming' by host antigen-presenting cells, are dependent on T(H) cells. A clearer understanding of the contribution of T(H) cells to CTL development has been hampered by the fact that most T(H)-independent responses have been demonstrated ex vivo as primary cytotoxic effectors, whereas T(H)-dependent responses generally require secondary in vitro re-stimulation for their detection. Here, we have monitored the primary and secondary responses of T(H)-dependent and T(H)-independent CTLs and find in both cases that CD4+ T cells are dispensable for primary expansion of CD8+ T cells and their differentiation into cytotoxic effectors. However, secondary CTL expansion (that is, a secondary response upon re-encounter with antigen) is wholly dependent on the presence of T(H) cells during, but not after, priming. Our results demonstrate that T-cell help is 'programmed' into CD8+ T cells during priming, conferring on these cells a hallmark of immune response memory: the capacity for functional expansion on re-encounter with antigen.  相似文献   

14.
Expression cloning and cDNA sequencing of the Na+/glucose co-transporter   总被引:10,自引:0,他引:10  
M A Hediger  M J Coady  T S Ikeda  E M Wright 《Nature》1987,330(6146):379-381
Organic substrates (sugars, amino acids, carboxylic acids and neutrotransmitters) are actively transported into eukaryotic cells by Na+ co-transport. Some of the transport proteins have been identified--for example, intestinal brush border Na+/glucose and Na+/proline transporters and the brain Na+/CI-/GABA transporter--and progress has been made in locating their active sites and probing their conformational states. The archetypical Na+-driven transporter is the intestinal brush border Na+/glucose co-transporter (see ref. 8), and a defect in the co-transporter is the origin of the congenital glucose-galactose malabsorption syndrome. Here we describe cloning of this co-transporter by a method new to membrane proteins. We have sequenced the cloned DNA and have found no homology between the Na+/glucose co-transporter and either the mammalian facilitated glucose carrier or the bacterial sugar transport proteins. This suggests that the mammalian Na+-driven transporter has no evolutionary relationship to the other sugar transporters.  相似文献   

15.
30只健康麻醉犬动脉血和脑脊液(CSF)酸碱变量及主要电解质检测结果分析发现:CSFpH、[K~+]<pHa和[K~+]_a,相互之间相关显著,其回归方程分别为CSFpH=0.477×pHa+3.78,CSF[K~+]=0.418×[K~+]_a+1.12。CSFPCO2、[Cl~-]、[乳酸][Lact]>PaCO2、[Cl-]_a和[Lact]_a,相互之间相关显著。其回归方程分别为CSFPCO2=0.564×PaCO2+3.5325,CSF[Cl~-]=0.5×[Cl~-]_a+76.7,CSF[Lact]+0.95×[Lact]_a+1.0。CSF[HCO_3~-]与CSFPCO2相关显著,回归方程为CSF[HCO_3~-]=1.898×CSFPCO2+10.6。  相似文献   

16.
采用等温蒸发法研究了四元含锂铷氯化物体系Li+,Na+,Rb+//Cl--H2O 298.2K下的相平衡关系,测定了平衡液相的溶解度、密度和折光率.基于实验数据,绘制了该四元体系的立体图、干基图、密度-组成图和折光率-组成图.该四元体系298.2K下的介稳相图由1个共饱和点,3条单变量曲线和3个结晶区(RbCl、NaCl、LiCl·H2O)组成.将研究的结果同LiCl+KCl+RbCl+H2O体系进行了对比和分析,总结Na+和K+对三元体系Li+,Rb+//Cl--H2O的影响.应用折光率计算的经验公式对实验测定的折光率进行了验证,其最大绝对误差小于-0.0090,从而证明了实验数据的可靠性.  相似文献   

17.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange.  相似文献   

18.
Graves AR  Curran PK  Smith CL  Mindell JA 《Nature》2008,453(7196):788-792
Lysosomes are the stomachs of the cell-terminal organelles on the endocytic pathway where internalized macromolecules are degraded. Containing a wide range of hydrolytic enzymes, lysosomes depend on maintaining acidic luminal pH values for efficient function. Although acidification is mediated by a V-type proton ATPase, a parallel anion pathway is essential to allow bulk proton transport. The molecular identity of this anion transporter remains unknown. Recent results of knockout experiments raise the possibility that ClC-7, a member of the CLC family of anion channels and transporters, is a contributor to this pathway in an osteoclast lysosome-like compartment, with loss of ClC-7 function causing osteopetrosis. Several mammalian members of the CLC family have been characterized in detail; some (including ClC-0, ClC-1 and ClC-2) function as Cl--conducting ion channels, whereas others act as Cl-/H+antiporters (ClC-4 and ClC-5). However, previous attempts at heterologous expression of ClC-7 have failed to yield evidence of functional protein, so it is unclear whether ClC-7 has an important function in lysosomal biology, and also whether this protein functions as a Cl- channel, a Cl-/H+ antiporter, or as something else entirely. Here we directly demonstrate an anion transport pathway in lysosomes that has the defining characteristics of a CLC Cl-/H+ antiporter and show that this transporter is the predominant route for Cl- through the lysosomal membrane. Furthermore, knockdown of ClC-7 expression by short interfering RNA can essentially ablate this lysosomal Cl-/H+ antiport activity and can strongly diminish the ability of lysosomes to acidify in vivo, demonstrating that ClC-7 is a Cl-/H+ antiporter, that it constitutes the major Cl- permeability of lysosomes, and that it is important in lysosomal acidification.  相似文献   

19.
文章在野外考察、GPS定点和土壤采样分析的基础上,借助Excel、SPSS13等统计软件对新疆博斯腾湖周围白刺植物下土壤总碱度、盐离子含量以及盐离子间相关性作了探讨。结果表明,土壤pH值为8.47(平均值),呈碱性。在0~15cm土层盐分含量2.775%,15~45cm土层盐分含量4.506%,45~70cm土层盐分含量3.096%;不同深度的盐分含量依次为15~45cm>45~70cm>0~15cm,各阴离子含量为 SO42->HCO3->Cl-,而CO32-在实验中未检测到,阳离子含量为K++Na+>Ca2+>Ma2+。在0~15cm土层Ca2+与K++Na+达极显著正相关,Ca2+与HCO3-呈显著正相关,Mg2+与Ca2+、K++Na+呈显著正相关,pH值与HCO3-、Mg2+呈显著反相关;在15~45cm土层Ca2+与K++Na+达极显著正相关,HCO3-与Cl-呈显著正相关,pH值与SO42-、HCO3-、K++Na+呈显著正相关;而在45~70cm土层Ca2+与K++Na+呈显著正相关,SO42-与Ca2+、K++Na+、Mg2+呈显著正相关。  相似文献   

20.
W Siffert  J W Akkerman 《Nature》1987,325(6103):456-458
Stimulated platelets take up sodium ions and release hydrogen ions due to activation of Na+/H+ exchange resulting in cytoplasmic alkalinization. Suppression of Na+/H+ exchange either by removal of extracellular Na+ or by application of amiloride inhibits shape change, secretion of granule contents and aggregation. The data we present here indicate that inhibition of this transport by ethylisopropyl-amiloride or by lowering extracellular sodium reduces or even completely suppresses the rise in cytoplasmic free Ca2+ concentration that is essential for platelet aggregation in response to thrombin. We also demonstrate that cytoplasmic alkalinization produced by exposure to the ionophore monensin sensitizes the human platelet response to stimulation by thrombin resulting in enhanced Ca2+ mobilization and aggregability. We conclude that an increase in intracellular pH evoked by activation of Na+/H+ counter transport is an important signal in stimulus-response coupling and forms an essential step in the cascade of events required to increase cytoplasmic free Ca2+ in platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号