首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Normal development of the cerebral cortex requires long-range migration of cortical neurons from proliferative regions deep in the brain. Lissencephaly ("smooth brain," from "lissos," meaning smooth, and "encephalos," meaning brain) is a severe developmental disorder in which neuronal migration is impaired, leading to a thickened cerebral cortex whose normally folded contour is simplified and smooth. Two identified lissencephaly genes do not account for all known cases, and additional lissencephaly syndromes have been described. An autosomal recessive form of lissencephaly (LCH) associated with severe abnormalities of the cerebellum, hippocampus and brainstem maps to chromosome 7q22, and is associated with two independent mutations in the human gene encoding reelin (RELN). The mutations disrupt splicing of RELN cDNA, resulting in low or undetectable amounts of reelin protein. LCH parallels the reeler mouse mutant (Reln(rl)), in which Reln mutations cause cerebellar hypoplasia, abnormal cerebral cortical neuronal migration and abnormal axonal connectivity. RELN encodes a large (388 kD) secreted protein that acts on migrating cortical neurons by binding to the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor 2 (ApoER2; refs 9-11 ), alpha3beta1 integrin and protocadherins. Although reelin was previously thought to function exclusively in brain, some humans with RELN mutations show abnormal neuromuscular connectivity and congenital lymphoedema, suggesting previously unsuspected functions for reelin in and outside of the brain.  相似文献   

2.
Heterozygous deletions of 17p13.3 result in the human neuronal migration disorders isolated lissencephaly sequence (ILS) and the more severe Miller-Dieker syndrome (MDS). Mutations in PAFAH1B1 (the gene encoding LIS1) are responsible for ILS and contribute to MDS, but the genetic causes of the greater severity of MDS are unknown. Here, we show that the gene encoding 14-3-3epsilon (YWHAE), one of a family of ubiquitous phosphoserine/threonine-binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes. 14-3-3epsilon binds to CDK5/p35-phosphorylated NUDEL and this binding maintains NUDEL phosphorylation. Similar to LIS1, deficiency of 14-3-3epsilon results in mislocalization of NUDEL and LIS1, consistent with reduction of cytoplasmic dynein function. These results establish a crucial role for 14-3-3epsilon in neuronal development by sustaining the effects of CDK5 phosphorylation and provide a molecular explanation for the differences in severity of human neuronal migration defects with 17p13.3 deletions.  相似文献   

3.
Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic and have cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cerebella of cdf/cdf homozygous mice, approximately 40% of Purkinje cells are located ectopically in the white matter and inner granule-cell layer. Many hippocampal pyramidal cells are scattered in the plexiform layers, and those that are correctly positioned are less densely packed than are cells in wild-type mice. We show that fear conditioning and prepulse inhibition of the startle response are also disrupted in cdf/cdf mice. We identify a deletion on chromosome 6 that removes approximately 150 kb in the cdf critical region. The deletion includes part of Catna2, encoding alpha N-catenin, a protein that links the classical cadherins to the neuronal cytoskeleton. Expression of a Catna2 transgene in cdf/cdf mice restored normal cerebellar and hippocampal morphology, prepulse inhibition and fear conditioning. The findings suggest that catenin cadherin cell-adhesion complexes are important in cerebellar and hippocampal lamination and in the control of startle modulation.  相似文献   

4.
The c-Abl protein is a non-receptor tyrosine kinase involved in many aspects of mammalian development. c-Abl kinase is widely expressed, but high levels are found in hyaline cartilage in the adult, bone tissue in newborn mice, and osteoblasts and associated neovasculature at sites of endochondrial ossification in the fetus. Mice homozygous for mutations in the gene encoding c-Abl (AIM) display increased perinatal mortality, reduced fertility, foreshortened crania and defects in the maturation of B cells in bone marrow. Here we demonstrate that Abl-/- mice are also osteoporotic. The long bones of mutant mice contain thinner cortical bone and reduced trabecular bone volume. The osteoporotic phenotype is not due to accelerated bone turnover--both the number and activity of osteoclasts are similar to those of control littermates--but rather to dysfunctional osteoblasts. In addition, the rate of mineral apposition in the mutant animals is reduced. Osteoblasts from both stromal and calvarial explants showed delayed maturation in vitro as measured by expression of alkaline phosphatase (ALP), induction of mRNA encoding osteocalcin and mineral deposition.  相似文献   

5.
The mammalian inner ear contains organs for the detection of sound and acceleration, the cochlea and the vestibule, respectively. Mechanosensory hair cells within the neuroepithelia of these organs transduce mechanical force generated by sound waves or head movements into neuronal signals. Defects in hair cells lead to deafness and balance defects. Hair cells have stereocilia that are indispensable for mechanosensation, but the molecular mechanisms regulating stereocilia formation are poorly understood. We show here that integrin alpha8beta1, its ligand fibronectin and the integrin-regulated focal adhesion kinase (FAK) co-localize to the apical hair-cell surface where stereocilia are forming. In mice homozygous for a targeted mutation of Itga8 (encoding the alphabeta8 subunit), this co-localization is perturbed and hair cells in the utricle, a vestibular subcompartment, lack stereocilia or contain malformed stereocilia. Most integrin alpha-8beta1-deficient mice die soon after birth due to kidney defects. Many of the survivors have difficulty balancing, consistent with the structural defects of the inner ear. Our data suggest that integrin alpha8beta1, and potentially other integrins, regulates hair-cell differentiation and stereocilia maturation. Mutations affecting matrix molecules cause inherited forms of inner ear disease and integrins may mediate some effects of matrix molecules in the ear; thus, mutations in integrin genes may lead to inner-ear diseases as well.  相似文献   

6.
Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis   总被引:18,自引:0,他引:18  
Atrioventricular and semilunar valve abnormalities are common birth defects, but how cardiac valvulogenesis is directed remains largely unknown. During studies of genetic interaction between Egfr, encoding the epidermal growth factor receptor, and Ptpn11, encoding the protein-tyrosine-phosphatase Shp2, we discovered that Egfr is required for semilunar, but not atrioventricular, valve development. Although unnoticed in earlier studies, mice homozygous for the hypomorphic Egfr allele waved-2 (Egfrwa2/wa2) exhibit semilunar valve enlargement resulting from over-abundant mesenchymal cells. Egfr-/- mice (CD1 background) have similar defects. The penetrance and severity of the defects in Egfrwa2/wa2 mice are enhanced by heterozygosity for a targeted mutation of exon 2 of Ptpn11 (ref. 3). Compound (Egfrwa2/wa2:Ptpn11+/-) mutant mice also show premature lethality. Electrocardiography, echocardiography and haemodynamic analyses showed that affected mice develop aortic stenosis and regurgitation. Our results identify the Egfr and Shp2 as components of a growth-factor signalling pathway required specifically for semilunar valvulogenesis, support the hypothesis that Shp2 is required for Egfr signalling in vivo, and provide an animal model for aortic valve disease.  相似文献   

7.
8.
Aberrant WNT pathway signaling is an early progression event in 90% of colorectal cancers. It occurs through mutations mainly of APC and less often of CTNNB1 (encoding beta-catenin) or AXIN2 (encoding axin-2, also known as conductin). These mutations allow ligand-independent WNT signaling that culminates in abnormal accumulation of free beta-catenin in the nucleus. We previously identified frequent promoter hypermethylation and gene silencing of the genes encoding secreted frizzled-related proteins (SFRPs) in colorectal cancer. SFRPs possess a domain similar to one in the WNT-receptor frizzled proteins and can inhibit WNT receptor binding to downregulate pathway signaling during development. Here we show that restoration of SFRP function in colorectal cancer cells attenuates WNT signaling even in the presence of downstream mutations. We also show that the epigenetic loss of SFRP function occurs early in colorectal cancer progression and may thus provide constitutive WNT signaling that is required to complement downstream mutations in the evolution of colorectal cancer.  相似文献   

9.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

10.
Although mutations in CYTB (cytochrome b) or BCS1L have been reported in isolated defects of mitochondrial respiratory chain complex III (cIII), most cIII-defective individuals remain genetically undefined. We identified a homozygous nonsense mutation in the gene encoding tetratricopeptide 19 (TTC19) in individuals from two families affected by progressive encephalopathy associated with profound cIII deficiency and accumulation of cIII-specific assembly intermediates. We later found a second homozygous nonsense mutation in a fourth affected individual. We demonstrated that TTC19 is embedded in the inner mitochondrial membrane as part of two high-molecular-weight complexes, one of which coincides with cIII. We then showed a physical interaction between TTC19 and cIII by coimmunoprecipitation. We also investigated a Drosophila melanogaster knockout model for TTC19 that showed low fertility, adult-onset locomotor impairment and bang sensitivity, associated with cIII deficiency. TTC19 is a putative cIII assembly factor whose disruption is associated with severe neurological abnormalities in humans and flies.  相似文献   

11.
Genes associated with human microcephaly, a condition characterized by a small brain, include critical regulators of proliferation, cell fate and DNA repair. We describe a syndrome of congenital microcephaly and diverse defects in cerebral cortical architecture. Genome-wide linkage analysis in two families identified a 7.5-Mb locus on chromosome 19q13.12 containing 148 genes. Targeted high throughput sequence analysis of linked genes in each family yielded > 4,000 DNA variants and implicated a single gene, WDR62, as harboring potentially deleterious changes. We subsequently identified additional WDR62 mutations in four other families. Magnetic resonance imaging and postmortem brain analysis supports important roles for WDR62 in the proliferation and migration of neuronal precursors. WDR62 is a WD40 repeat-containing protein expressed in neuronal precursors as well as in postmitotic neurons in the developing brain and localizes to the spindle poles of dividing cells. The diverse phenotypes of WDR62 suggest it has central roles in many aspects of cerebral cortical development.  相似文献   

12.
The Wnt signaling pathway is essential for development and organogenesis. Wnt signaling stabilizes beta-catenin, which accumulates in the cytoplasm, binds to 1-cell factor (TCF; also known as lymphocyte enhancer-binding factor, LEF) and then upregulates downstream genes. Mutations in CTNNB1 (encoding beta-catenin) or APC (adenomatous polyposis coli) have been reported in human neoplasms including colon cancers and hepatocellular carcinomas (HCCs). Because HCC5 tend to show accumulation of beta-catenin more often than mutations in CTNNB1, we looked for mutations in AXIN1, encoding a key factor for Wnt signaling, in 6 HCC cell lines and 100 primary HCC5. Among the 4 cell lines and 87 HCC5 in which we did not detect CTNNB1 mutations, we identified AXIN1 mutations in 3 cell lines and 6 mutations in 5 of the primary HCCs. In cell lines containing mutations in either gene, we observed increased DNA binding of TCF associated with beta-catenin in nuclei. Adenovirus mediated gene transfer of wild-type AXINI induced apoptosis in hepatocellular and colorectal cancer cells that had accumulated beta-catenin as a consequence of either APC, CTNNB1 or AXIN1 mutation, suggesting that axin may be an effective therapeutic molecule for suppressing growth of hepatocellular and colorectal cancers.  相似文献   

13.
Heterozygous deletions within human chromosome 22q11 are the genetic basis of DiGeorge/velocardiofacial syndrome (DGS/VCFS), the most common deletion syndrome (1 in 4,000 live births) in humans. CRKL maps within the common deletion region for DGS/VCFS (ref. 2) and encodes an SH2-SH3-SH3 adapter protein closely related to the Crk gene products. Here we report that mice homozygous for a targeted null mutation at the CrkL locus (gene symbol Crkol for mice) exhibit defects in multiple cranial and cardiac neural crest derivatives including the cranial ganglia, aortic arch arteries, cardiac outflow tract, thymus, parathyroid glands and craniofacial structures. We show that the migration and early expansion of neural crest cells is unaffected in Crkol-/- embryos. These results therefore indicate an essential stage- and tissue-specific role for Crkol in the function, differentiation, and/or survival of neural crest cells during development. The similarity between the Crkol-/- phenotype and the clinical manifestations of DGS/VCFS implicate defects in CRKL-mediated signaling pathways as part of the molecular mechanism underlying this syndrome.  相似文献   

14.
15.
Warburg Micro syndrome (WARBM1) is a severe autosomal recessive disorder characterized by developmental abnormalities of the eye and central nervous system and by microgenitalia. We identified homozygous inactivating mutations in RAB3GAP, encoding RAB3 GTPase activating protein, a key regulator of the Rab3 pathway implicated in exocytic release of neurotransmitters and hormones, in 12 families with Micro syndrome. We hypothesize that the underlying pathogenesis of Micro syndrome is a failure of exocytic release of ocular and neurodevelopmental trophic factors.  相似文献   

16.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies.  相似文献   

17.
Pigmentary glaucoma is a significant cause of human blindness. Abnormally liberated iris pigment and cell debris enter the ocular drainage structures, leading to increased intraocular pressure (IOP) and glaucoma. DBA/2J (D2) mice develop a form of pigmentary glaucoma involving iris pigment dispersion (IPD) and iris stromal atrophy (ISA). Using high-resolution mapping techniques, sequencing and functional genetic tests, we show that IPD and ISA result from mutations in related genes encoding melanosomal proteins. IPD is caused by a premature stop codon mutation in the Gpnmb (GpnmbR150X) gene, as proved by the occurrence of IPD only in D2 mice that are homozygous with respect to GpnmbR150X; otherwise, similar D2 mice that are not homozygous for GpnmbR150X do not develop IPD. ISA is caused by the recessive Tyrp1b mutant allele and rescued by the transgenic introduction of wildtype Tyrp1. We hypothesize that IPD and ISA alter melanosomes, allowing toxic intermediates of pigment production to leak from melanosomes, causing iris disease and subsequent pigmentary glaucoma. This is supported by the rescue of IPD and ISA in D2 eyes with substantially decreased pigment production. These data indicate that pigment production and mutant melanosomal protein genes may contribute to human pigmentary glaucoma. The fact that hypopigmentation profoundly alleviates the D2 disease indicates that therapeutic strategies designed to decrease pigment production may be beneficial in human pigmentary glaucoma.  相似文献   

18.
The Escherichia coli gene recQ was identified as a RecF recombination pathway gene. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes.  相似文献   

19.
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process.  相似文献   

20.
Germline gain-of-function mutations in SOS1 cause Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号