首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper.  相似文献   

3.
The increase in oil price volatility in recent years has raised the importance of forecasting it accurately for valuing and hedging investments. The paper models and forecasts the crude oil exchange‐traded funds (ETF) volatility index, which has been used in the last years as an important alternative measure to track and analyze the volatility of future oil prices. Analysis of the oil volatility index suggests that it presents features similar to those of the daily market volatility index, such as long memory, which is modeled using well‐known heterogeneous autoregressive (HAR) specifications and new extensions that are based on net and scaled measures of oil price changes. The aim is to improve the forecasting performance of the traditional HAR models by including predictors that capture the impact of oil price changes on the economy. The performance of the new proposals and benchmarks is evaluated with the model confidence set (MCS) and the Generalized‐AutoContouR (G‐ACR) tests in terms of point forecasts and density forecasting, respectively. We find that including the leverage in the conditional mean or variance of the basic HAR model increases its predictive ability. Furthermore, when considering density forecasting, the best models are a conditional heteroskedastic HAR model that includes a scaled measure of oil price changes, and a HAR model with errors following an exponential generalized autoregressive conditional heteroskedasticity specification. In both cases, we consider a flexible distribution for the errors of the conditional heteroskedastic process.  相似文献   

4.
The primary purpose of this paper is to investigate whether a novel Markov regime-switching mixed-data sampling (MRS-MIADS) model we design can improve the prediction accuracy of the realized variance (RV) of Bitcoin. Moreover, to verify whether the importance of jumps for RV forecasting changes over time, we extend the standard MIDAS model to characterize two volatility regimes and introduce a jump-driven time-varying transition probability between the two regimes. Our results suggest that the proposed novel MRS-MIDAS model exhibits statistically significant improvement for forecasting the RV of Bitcoin. In addition, we find that jump occurrences significantly increase the persistence of the high-volatility regime and switch between high- and low-volatility regimes. A wide range of checks confirm the robustness of our results. Finally, the proposed model shows significant improvement for 2-week and 1-month horizon forecasts.  相似文献   

5.
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation.  相似文献   

6.
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper compares the information content of realized measures constructed from high‐frequency data and implied volatilities from options in the context of forecasting volatility. The comparison is based on within‐sample and out‐of‐sample (over horizons of 1–22 days) forecasts of daily S&P 500 index return volatility. The paper adds to the findings of previous studies, by considering recent developments in the related practice and the literature. It is shown that, for within‐sample fitting, the realized measure is more informative than the implied volatility. In contrast, the implied volatility is more informative than the realized measure for out‐of‐sample forecasting, in particular for multi‐step‐ahead forecasting. Moreover, we show that it is helpful to use all the information provided by the realized measure and the implied volatility for the within‐sample fitting. For multi‐step‐ahead forecasting, however, it is better to use only the implied volatility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Empirical high‐frequency data can be used to separate the continuous and the jump components of realized volatility. This may improve on the accuracy of out‐of‐sample realized volatility forecasts. A further improvement may be realized by disentangling the two components using a sampling frequency at which the market microstructure effect is negligible, and this is the objective of the paper. In particular, a significant improvement in the accuracy of volatility forecasts is obtained by deriving the jump information from time intervals at which the noise effect is weak. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we investigate the time series properties of S&P 100 volatility and the forecasting performance of different volatility models. We consider several nonparametric and parametric volatility measures, such as implied, realized and model‐based volatility, and show that these volatility processes exhibit an extremely slow mean‐reverting behavior and possible long memory. For this reason, we explicitly model the near‐unit root behavior of volatility and construct median unbiased forecasts by approximating the finite‐sample forecast distribution using bootstrap methods. Furthermore, we produce prediction intervals for the next‐period implied volatility that provide important information about the uncertainty surrounding the point forecasts. Finally, we apply intercept corrections to forecasts from misspecified models which dramatically improve the accuracy of the volatility forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a new mixed‐frequency approach to predict stock return volatilities out‐of‐sample. Based on the strategy of momentum of predictability (MoP), our mixed‐frequency approach has a model switching mechanism that switches between generalized autoregressive conditional heteroskedasticity (GARCH)‐class models that only use low‐frequency data and heterogeneous autoregressive models of realized volatility (HAR‐RV)‐type that only use high‐frequency data. The MoP model simply selects a forecast with relatively good past performance between the GARCH‐class and HAR‐RV‐type forecasts. The model confidence set (MCS) test shows that our MoP strategy significantly outperforms the competing models, which is robust to various settings. The MoP test shows that a relatively good recent past forecasting performance of the GARCH‐class or HAR‐RV‐type model is significantly associated with a relatively good current performance, supporting the success of the MoP model.  相似文献   

11.
The heterogeneous autoregressive model of realized volatility (HAR‐RV) is inspired by the heterogeneous market hypothesis and characterizes realized volatility dynamics through a linear function of lagged daily, weekly and monthly realized volatilities with a (1, 5, 22) lag structure. Considering that different markets can have different heterogeneous structures and a market's heterogeneous structure can vary over time, we build an adaptive heterogeneous autoregressive model of realized volatility (AHAR‐RV), whose lag structure is optimized with a genetic algorithm. Using nine common loss functions and the superior predictive ability test, we find that our AHAR‐RV model and its extensions provide significantly better out‐of‐sample volatility forecasts for the CSI 300 index than the corresponding HAR models. Furthermore, the AHAR‐RV model significantly outperforms all the other models under most loss functions. Besides, we confirm that Chinese stock markets' heterogeneous structure varies over time and the (1, 5, 22) lag structure is not the optimal choice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We perform Bayesian model averaging across different regressions selected from a set of predictors that includes lags of realized volatility, financial and macroeconomic variables. In our model average, we entertain different channels of instability by either incorporating breaks in the regression coefficients of each individual model within our model average, breaks in the conditional error variance, or both. Changes in these parameters are driven by mixture distributions for state innovations (MIA) of linear Gaussian state‐space models. This framework allows us to compare models that assume small and frequent as well as models that assume large but rare changes in the conditional mean and variance parameters. Results using S&P 500 monthly and quarterly realized volatility data from 1960 to 2014 suggest that Bayesian model averaging in combination with breaks in the regression coefficients and the error variance through MIA dynamics generates statistically significantly more accurate forecasts than the benchmark autoregressive model. However, compared to a MIA autoregression with breaks in the regression coefficients and the error variance, we fail to provide any drastic improvements.  相似文献   

13.
Multifractal models have recently been introduced as a new type of data‐generating process for asset returns and other financial data. Here we propose an adaptation of this model for realized volatility. We estimate this new model via generalized method of moments and perform forecasting by means of best linear forecasts derived via the Levinson–Durbin algorithm. Its out‐of‐sample performance is compared against other popular time series specifications. Using an intra‐day dataset for five major international stock market indices, we find that the the multifractal model for realized volatility improves upon forecasts of its earlier counterparts based on daily returns and of many other volatility models. While the more traditional RV‐ARFIMA model comes out as the most successful model (in terms of the number of cases in which it has the best forecasts for all combinations of forecast horizons and evaluation criteria), the new model performs often significantly better during the turbulent times of the recent financial crisis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Volatility models such as GARCH, although misspecified with respect to the data‐generating process, may well generate volatility forecasts that are unconditionally unbiased. In other words, they generate variance forecasts that, on average, are equal to the integrated variance. However, many applications in finance require a measure of return volatility that is a non‐linear function of the variance of returns, rather than of the variance itself. Even if a volatility model generates forecasts of the integrated variance that are unbiased, non‐linear transformations of these forecasts will be biased estimators of the same non‐linear transformations of the integrated variance because of Jensen's inequality. In this paper, we derive an analytical approximation for the unconditional bias of estimators of non‐linear transformations of the integrated variance. This bias is a function of the volatility of the forecast variance and the volatility of the integrated variance, and depends on the concavity of the non‐linear transformation. In order to estimate the volatility of the unobserved integrated variance, we employ recent results from the realized volatility literature. As an illustration, we estimate the unconditional bias for both in‐sample and out‐of‐sample forecasts of three non‐linear transformations of the integrated standard deviation of returns for three exchange rate return series, where a GARCH(1, 1) model is used to forecast the integrated variance. Our estimation results suggest that, in practice, the bias can be substantial. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
We investigate the realized volatility forecast of stock indices under the structural breaks. We utilize a pure multiple mean break model to identify the possibility of structural breaks in the daily realized volatility series by employing the intraday high‐frequency data of the Shanghai Stock Exchange Composite Index and the five sectoral stock indices in Chinese stock markets for the period 4 January 2000 to 30 December 2011. We then conduct both in‐sample tests and out‐of‐sample forecasts to examine the effects of structural breaks on the performance of ARFIMAX‐FIGARCH models for the realized volatility forecast by utilizing a variety of estimation window sizes designed to accommodate potential structural breaks. The results of the in‐sample tests show that there are multiple breaks in all realized volatility series. The results of the out‐of‐sample point forecasts indicate that the combination forecasts with time‐varying weights across individual forecast models estimated with different estimation windows perform well. In particular, nonlinear combination forecasts with the weights chosen based on a non‐parametric kernel regression and linear combination forecasts with the weights chosen based on the non‐negative restricted least squares and Schwarz information criterion appear to be the most accurate methods in point forecasting for realized volatility under structural breaks. We also conduct an interval forecast of the realized volatility for the combination approaches, and find that the interval forecast for nonlinear combination approaches with the weights chosen according to a non‐parametric kernel regression performs best among the competing models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Using the generalized dynamic factor model, this study constructs three predictors of crude oil price volatility: a fundamental (physical) predictor, a financial predictor, and a macroeconomic uncertainty predictor. Moreover, an event‐triggered predictor is constructed using data extracted from Google Trends. We construct GARCH‐MIDAS (generalized autoregressive conditional heteroskedasticity–mixed‐data sampling) models combining realized volatility with the predictors to predict oil price volatility at different forecasting horizons. We then identify the predictive power of the realized volatility and the predictors by the model confidence set (MCS) test. The findings show that, among the four indexes, the financial predictor has the most predictive power for crude oil volatility, which provides strong evidence that financialization has been the key determinant of crude oil price behavior since the 2008 global financial crisis. In addition, the fundamental predictor, followed by the financial predictor, effectively forecasts crude oil price volatility in the long‐run forecasting horizons. Our findings indicate that the different predictors can provide distinct predictive information at the different horizons given the specific market situation. These findings have useful implications for market traders in terms of managing crude oil price risk.  相似文献   

18.
This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra‐day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Since volatility is perceived as an explicit measure of risk, financial economists have long been concerned with accurate measures and forecasts of future volatility and, undoubtedly, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model has been widely used for doing so. It appears, however, from some empirical studies that the GARCH model tends to provide poor volatility forecasts in the presence of additive outliers. To overcome the forecasting limitation, this paper proposes a robust GARCH model (RGARCH) using least absolute deviation estimation and introduces a valuable estimation method from a practical point of view. Extensive Monte Carlo experiments substantiate our conjectures. As the magnitude of the outliers increases, the one‐step‐ahead forecasting performance of the RGARCH model has a more significant improvement in two forecast evaluation criteria over both the standard GARCH and random walk models. Strong evidence in favour of the RGARCH model over other competitive models is based on empirical application. By using a sample of two daily exchange rate series, we find that the out‐of‐sample volatility forecasts of the RGARCH model are apparently superior to those of other competitive models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, we explore the effect of cojumps within the agricultural futures market, and cojumps between the agricultural futures market and the stock market, on stock volatility forecasting. Also, we take into account large and small components of cojumps. We have several noteworthy findings. First, large jumps may lead to more substantial fluctuations and are more powerful than small jumps. The effect of cojumps and their decompositions on future volatility are mixed. Second, a model including large and small cojumps between the agricultural futures market and the stock market can achieve a higher forecasting accuracy, implying that large and small cojumps contain more useful predictive information than cojumps themselves. Third, our conclusions are robust based on various robustness tests such as the realized kernel, expanding forecasts, different forecasting windows, different jump tests, and different threshold values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号