首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lectin-like polypeptides of P. falciparum bind to red cell sialoglycoproteins   总被引:14,自引:0,他引:14  
M Jungery  D Boyle  T Patel  G Pasvol  D J Weatherall 《Nature》1983,301(5902):704-705
Attempts to control human malaria by immunological means could be compromised by antigenic variability within and between different strains of malarial parasites1. A useful alternative approach might be to block parasite antigens which are important in the mechanisms of invasion of red cells. As the major human parasite Plasmodium falciparum is highly specific for human red cells, isolation of the proteins involved in the recognition of red cells by this parasite might be of particular value. Recent studies suggest that the major red cell sialoglycoproteins (SGPs), glycophorins A, B and possibly C, may carry the sites recognized by the parasite2-4. Furthermore, because certain carbohydrates present on SGPs such as N-acetylglucosamine are able to block invasion by the parasite5, they may be involved in the initial interaction between parasite and red cell. We have now identified parasite proteins which bind to SGP or N-acetylglucosamine on Sepharose 4B columns. Three proteins, of molecular weights (MWs) 140,000 (140K), 70K and 35K, seem to be specifically bound by N-acetylglucosamine.  相似文献   

2.
Singh SK  Hora R  Belrhali H  Chitnis CE  Sharma A 《Nature》2006,439(7077):741-744
Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.  相似文献   

3.
M H Rodriguez  M Jungery 《Nature》1986,324(6095):388-391
Several observations suggest that iron is essential for the development of malaria parasites but there is evidence that the parasites in erythrocytes do not obtain iron from haemoglobin. The total haemin level in parasitized erythrocytes does not vary during parasite development, indicating that the iron-containing moiety of haemoglobin is not detectably metabolized. Although parasite proteases can degrade the protein part of haemoglobin in red cells, no parasite enzymes that degrade haemin have been identified. In mammalian cells, haemin is degraded to carbon monoxide and bilirubin by the enzyme haeme oxygenase. This enzyme has not been found in malaria parasites. In fact haemin has been found to be toxic to parasite carbohydrate metabolism. Thus, iron apparently cannot be liberated from haemin and instead is sequestered in infected red cells as haemozoin, the characteristic pigment associated with malarial infection. If iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes, then the parasite must synthesize its own transferrin receptor and localize it on the surface of the infected cell, because the receptors for transferrin are lost during erythrocyte maturation. Our results here suggest that Plasmodium falciparum synthesizes its own transferrin receptors enabling it to take up iron from transferrin by receptor-mediated endocytosis.  相似文献   

4.
5.
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.  相似文献   

6.
Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer.  相似文献   

7.
Red blood cells infected with mature stages of the malaria parasite Plasmodium falciparum bind to the endothelial lining of capillaries and venules. This sequestration is important for the survival of the parasite but may have severe consequences for the host. For example, it is involved in the causation of cerebral malaria which carries 25% mortality. Knob-like protrusions present on the surface of infected erythrocytes have been considered necessary but not sufficient for this cytoadherence. Here we describe the adhesion to endothelial cells of infected erythrocytes which do not have knobs. A human monoclonal antibody (33G2) which was specific for an epitope containing regularly spaced dimers of glutamic acid present in the repeated amino-acid sequences of some defined P. falciparum antigens was found to inhibit cyto-adherence and may therefore be an important reagent for elucidating the molecular basis of parasite sequestration.  相似文献   

8.
Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.  相似文献   

9.
Erythrocyte invasion by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion requires a series of extracellular recognition events between erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. None of the few known receptor-ligand interactions involved are required in all parasite strains, indicating that the parasite is able to access multiple redundant invasion pathways. Here, we show that we have identified a receptor-ligand pair that is essential for erythrocyte invasion in all tested P. falciparum strains. By systematically screening a library of erythrocyte proteins, we have found that the Ok blood group antigen, basigin, is a receptor for PfRh5, a parasite ligand that is essential for blood stage growth. Erythrocyte invasion was potently inhibited by soluble basigin or by basigin knockdown, and invasion could be completely blocked using low concentrations of anti-basigin antibodies; importantly, these effects were observed across all laboratory-adapted and field strains tested. Furthermore, Ok(a-) erythrocytes, which express a basigin variant that has a weaker binding affinity for PfRh5, had reduced invasion efficiencies. Our discovery of a cross-strain dependency on a single extracellular receptor-ligand pair for erythrocyte invasion by P. falciparum provides a focus for new anti-malarial therapies.  相似文献   

10.
The mosquito-borne malaria parasite Plasmodium falciparum kills an estimated 0.7-2.7 million people every year, primarily children in sub-Saharan Africa. Without effective interventions, a variety of factors-including the spread of parasites resistant to antimalarial drugs and the increasing insecticide resistance of mosquitoes-may cause the number of malaria cases to double over the next two decades. To stimulate basic research and facilitate the development of new drugs and vaccines, the genome of Plasmodium falciparum clone 3D7 has been sequenced using a chromosome-by-chromosome shotgun strategy. We report here the nucleotide sequences of chromosomes 10, 11 and 14, and a re-analysis of the chromosome 2 sequence. These chromosomes represent about 35% of the 23-megabase P. falciparum genome.  相似文献   

11.
Mu J  Duan J  Makova KD  Joy DA  Huynh CQ  Branch OH  Li WH  Su XZ 《Nature》2002,418(6895):323-326
The Malaria's Eve hypothesis, proposing a severe recent population bottleneck (about 3,000-5,000 years ago) of the human malaria parasite Plasmodium falciparum, has prompted a debate about the origin and evolution of the parasite. The hypothesis implies that the parasite population is relatively homogeneous, favouring malaria control measures. Other studies, however, suggested an ancient origin and large effective population size. To test the hypothesis, we analysed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of P. falciparum. We have identified 403 polymorphic sites, including 238 SNPs and 165 microsatellites, from five parasite clones, establishing chromosome-wide haplotypes and a dense map with one polymorphic marker per approximately 2.3 kilobases. On the basis of synonymous SNPs and non-coding SNPs, we estimate the time to the most recent common ancestor to be approximately 100,000-180,000 years, significantly older than the proposed bottleneck. Our estimated divergence time coincides approximately with the start of human population expansion, and is consistent with a genetically complex organism able to evade host immunity and other antimalarial efforts.  相似文献   

12.
The late blood stages of the human malaria parasite, Plasmodium falciparum, carry a major surface antigen, p190, of molecular weight (Mr) 190,000. This antigenically variable protein is actively processed, first as the parasite matures and again when it is released into the blood stream and invades a new erythrocyte to initiate a cycle of growth. It elicits a strong immune response in man; all tested adult sera from endemic areas have antibodies against this protein. Our evidence indicates that purified p190 can alter the course of parasitaemia in monkeys with falciparum malaria. We have also succeeded in cloning part of the gene for p190 and expressing it in Escherichia coli. To this end we have developed a new technique, antibody select, which greatly simplifies final identification of expressing clones.  相似文献   

13.
E A Usanga  L Luzzatto 《Nature》1985,313(6005):793-795
There is impressive evidence from geographical data, studies in the field and in vitro culture work that genetically determined deficiency of glucose 6-phosphate dehydrogenase (G6PD) confers relative protection against the human malaria parasite, Plasmodium falciparum. G6PD is encoded by an X-chromosome-linked gene, and protection phenomenon is manifested in heterozygous females who are genetic mosaics but, surprisingly, not in hemizygous males with complete deficiency. We have shown previously that the parasite, when passaged serially through G6PD-deficient red cells, undergoes adaptive changes that gradually improve its ability to multiply in these deficient cells. To explain the above paradox, we now show that this adaptive process is associated with, and may consist in, the induction of synthesis of a novel G6PD coded by Plasmodium falciparum.  相似文献   

14.
Plasmodium falciparum infected erythrocytes containing mature trophozoites and schizonts sequester along venular endothelium and are not in the peripheral circulation of patients with malaria. Knobs appear on infected erythrocytes and are the points of attachment to endothelium. Sequestration may protect the parasite from splenic destruction and may play a role in the pathogenesis of cerebral malaria. Correlates of sequestration have been developed in vitro using cultured human endothelium and an amelanotic melanoma cell line. Knobless strains (K-) of P. falciparum fail to sequester in vivo and to bind to cells in vitro. We now present evidence that the receptor for cytoadherence is the glycoprotein, thrombospondin. Aotus monkey or human erythrocytes containing knobby (K+) but not Aotus erythrocytes containing knobless strains of P. falciparum bind to immobilized thrombospondin. Neither binds to the adhesive proteins laminin, fibronectin, factor VIII/von Willebrand factor or vitronectin. Both soluble thrombospondin and anti-thrombospondin antibodies inhibit binding of parasitized Aotus erythrocytes to immobilize thrombospondin and to melanoma cells which secrete thrombospondin.  相似文献   

15.
L G Pologe  J V Ravetch 《Nature》1986,322(6078):474-477
The significant morbidity and mortality associated with Plasmodium falciparum malaria results, in part, from the sequestration of parasitized erythrocytes in postcapillary venules, which may protect the parasite from splenic clearance and contribute to the pathogenesis of cerebral malaria. This sequestration has been linked to the expression of parasite-induced knob structures on the surface of the infected erythrocyte which mediate the cytoadherence phenomenon. While knobs are necessary for cytoadherence, they are not sufficient, requiring both parasite- and host-encoded proteins. Spontaneous mutants of P. falciparum have been isolated from in vitro cultures which lack the ability to express knobs and fail to cytoadhere. A histidine-rich protein has been described which is associated with the knobby phenotype and may be a constituent of the knob. We now report the isolation of complementary DNA clones for a knob-associated histidine-rich protein (KAHRP) and demonstrate that in knobless mutants the gene for this protein has undergone a rearrangement, resulting in a deletion in the 3' coding sequence. Moreover, the chromosome to which the KAHRP gene maps is rearranged in these mutants, producing a telomeric location of the truncated gene. These observations explain the loss of expression of the messenger RNA and protein in such mutants and may explain the loss of the knob itself. The implications for the generation of spontaneous mutations in the parasite by this novel mechanism are discussed.  相似文献   

16.
Hyman RW  Fung E  Conway A  Kurdi O  Mao J  Miranda M  Nakao B  Rowley D  Tamaki T  Wang F  Davis RW 《Nature》2002,419(6906):534-537
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy. Here we report the nucleotide sequence of the third largest of the parasite's 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).  相似文献   

17.
The malarial parasite Plasmodium vivax causes disease in humans, including chronic infections and recurrent relapses, but the course of infection is rarely fatal, unlike that caused by Plasmodium falciparum. To investigate differences in pathogenicity between P. vivax and P. falciparum, we have compared the subtelomeric domains in the DNA of these parasites. In P. falciparum, subtelomeric domains are conserved and contain ordered arrays of members of multigene families, such as var, rif and stevor, encoding virulence determinants of cytoadhesion and antigenic variation. Here we identify, through the analysis of a continuous 155,711-base-pair sequence of a P. vivax chromosome end, a multigene family called vir, which is specific to P. vivax. The vir genes are present at about 600-1,000 copies per haploid genome and encode proteins that are immunovariant in natural infections, indicating that they may have a functional role in establishing chronic infection through antigenic variation.  相似文献   

18.
Rapid switching to multiple antigenic and adhesive phenotypes in malaria.   总被引:67,自引:0,他引:67  
Adhesion of parasitized erythrocytes to post-capillary venular endothelium or uninfected red cells is strongly implicated in the pathogenesis of severe Plasmodium falciparum malaria. Neoantigens at the infected red-cell surface adhere to a variety of host receptors, demonstrate serological diversity in field isolates and may also be a target of the host-protective immune response. Here we use sequential cloning of P. falciparum by micromanipulation to investigate the ability of a parasite to switch antigenic and cytoadherence phenotypes. Our data show that antigens at the parasitized cell surface undergo clonal variation in vitro in the absence of immune pressure at the rate of 2% per generation with concomitant modulations of the adhesive phenotype. A clone has the potential to switch at high frequency to a variety of antigenic and adhesive phenotypes, including a new type of cytoadherence behaviour, 'auto-agglutination' of infected erythrocytes. This rapid appearance of antigenic and functional heterogeneity has important implications for pathogenesis and acquired immunity.  相似文献   

19.
The complexity of the life cycle of the protozoan malaria parasite Plasmodium falciparum has hindered genetic analysis; even the number of chromosomes in P. falciparum is uncertain. The blood stages of rodent malaria parasites are haploid and hybridization with cloned complementary DNAs similarly suggests a haploid genome in P. falciparum blood stages (ref. 4 and our unpublished results). A novel approach to karyoptic and linkage analysis in P. falciparum has been provided recently by the technique of pulsed-field gradient (PFG) gel electrophoresis, which allows the fractionation of DNA molecules of 30-3,000 kilobases (kb), a range including the sizes of intact chromosomal DNA molecules from eukaryotes such as yeast and trypanosomatids. We describe here the fractionation by PFG electrophoresis of chromosomal DNA molecules from P. falciparum into at least seven discrete species which vary in size by up to 20% between different isolates. Several genes for P. faciparum antigens which contain repetitive sequences are located on different chromosomes. Surprisingly, two of the chromosomes seem to contain the same sequences.  相似文献   

20.
Mueller AK  Labaied M  Kappe SH  Matuschewski K 《Nature》2005,433(7022):164-167
Malaria is a mosquito-borne disease that is transmitted by inoculation of the Plasmodium parasite sporozoite stage. Sporozoites invade hepatocytes, transform into liver stages, and subsequent liver-stage development ultimately results in release of pathogenic merozoites. Liver stages of the parasite are a prime target for malaria vaccines because they can be completely eliminated by sterilizing immune responses, thereby preventing malarial infection. Using expression profiling, we previously identified genes that are only expressed in the pre-erythrocytic stages of the parasite. Here, we show by reverse genetics that one identified gene, UIS3 (upregulated in infective sporozoites gene 3), is essential for early liver-stage development. uis3-deficient sporozoites infect hepatocytes but are unable to establish blood-stage infections in vivo, and thus do not lead to disease. Immunization with uis3-deficient sporozoites confers complete protection against infectious sporozoite challenge in a rodent malaria model. This protection is sustained and stage specific. Our findings demonstrate that a safe and effective, genetically attenuated whole-organism malaria vaccine is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号