首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ti-Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental powders. The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were investigated. For each Mo concentration, the optimum sintering temperature was determined, resulting in a fully dense and uniform microstructure of the alloy. The optimized sintering temperature gradually increases in the range of 1100–1300℃ with the increase in Mo content. The microstructure of the Ti-(6–12)Mo alloy consists of acicular α phase surrounded by equiaxed grains of β phase, while the Ti-14Mo alloy only contains single β phase. A small amount of fine α lath precipitated from β phase contributes to the improvement in strength and hardness of the alloys. Under the sintering condition at 1250℃, the Ti-12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472, the compressive yield strength of 2182 MPa, the compression rate of 32.7%, and the elastic modulus of 72.1 GPa. These results demonstrate that Ti-Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.  相似文献   

2.
转底炉处理冶金粉尘工艺的锌钾钠脱除及烟气形成   总被引:1,自引:0,他引:1  
转底炉直接还原处理钢铁厂冶金粉尘过程中,Zn、K、Na等元素的脱除及烟气形成过程对转底炉工艺实施效果影响很大.采用高温管式炉模拟转底炉工艺条件,用钢铁厂含锌粉尘制成内配碳球团,进行直接还原实验研究,并收集实验过程产生的烟气和二次粉尘,对烟气中的气体成分以及烟气中的二次粉尘进行化学成分、微观结构以及物相组成分析.研究证明:Zn的脱除率可以达到98%,K、Na、Pb的脱除率分别达到80%、88%和85%;烟气中N2、CO、CO2的体积分数分别为71.4%、14.5%和14.1%;烟气中二次粉尘主要物相为ZnO、KCl、Zn5(OH)8CI2H2O、PbO和NaCl,二次粉尘中ZnO含量高达80%,可作为二次锌资源加以利用.在此基础上分析了转底炉直接还原过程中Zn、Ph、K、Na脱除和烟气形成机理.  相似文献   

3.
Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700–1000°C). Magnetic separation of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt% and a total nickel content of 1.91wt%. Its mineral composition mainly consists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with increasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000°C results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt% and 56.86wt%, and the corresponding recovery rates are 84.38% and 53.76%, respectively.  相似文献   

4.
Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0wt% and reduction roasting at 1250℃ for 60 min. The magnetic concentrate with an iron content of 90.59wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 kA/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.  相似文献   

5.
Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250℃; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase.  相似文献   

6.
In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were prepared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%–40wt% SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ceramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.  相似文献   

7.
FCC催化剂生产过程会产生大量白泥,白泥组分以Al、Si为主,并含有一定重金属组分。如未能有效资源化利用,则不仅占用大量土地,还可能造成环境污染。本文以兰州石化FCC催化剂生产过程产生的白泥为原料,粘土为粘结剂,对比研究不同造孔剂性能,并采用正交实验优化制备工艺参数。实验结果表明,以淀粉作为造孔剂效果更佳;在实验条件下,最佳工艺参数为10wt%造孔剂、10wt%粘结剂、烧结温度950℃。此时制备的多孔陶瓷材料的气孔率为34.41%,抗压强度为14.76MPa。  相似文献   

8.
In the present work, Si C ceramics was fabricated with Al N using B_4 C and C as sintering aids by a solid-state pressureless-sintered method. The effects of Al N contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained Si C ceramics were thoroughly investigated. Al N was found to promote further densification of the Si C ceramics due to its evaporation over 1800 °C,transportation, and solidification in the pores resulted from Si C grain coarsening. The highest relative density of 99.65% was achieved for Si C sample with 15.0 wt% Al N by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for Si C ceramics containing Al N tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% Al N sintered at 1900 °C for 1 h in Ar. Also, Si C ceramics with 30.0 wt% Al N exhibited the highest fracture toughness of 5.23 MPa m~(1/2) when sintered at 1900 °C.  相似文献   

9.
Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of “vacuum distillation + oxidizing roasting” and “vacuum distillation + hydrogen reduction” were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600℃ for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.  相似文献   

10.
High translucency is one of the excellent properties of AlN ceramics because of its wide optical band gap energy of 6.2 eV. We have achieved success in producing AlN ceramic tube of 98% total visible light transmittance at 0.6 mm thick tube wall by applying an improved sintering technique. This AlN ceramic was produced by sintering at 1880℃ using Ca3Al2O6 as a sintering additive and in reduction atmosphere to remove the sintering additive from the final sintered material. After the sintering, the annealing ...  相似文献   

11.
Ti-51at%Ni shape memory alloys (SMAs) were successfully produced via a powder metallurgy and microwave sintering technique. The influence of sintering parameters on porosity reduction, microstructure, phase transformation temperatures, and mechanical properties were investigated by optical microscopy, field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), compression tests, and microhardness tests. Varying the microwave temperature and holding time was found to strongly affect the density of porosity, presence of precipitates, transformation temperatures, and mechanical properties. The lowest density and smallest pore size were observed in the Ti-51at%Ni samples sintered at 900℃ for 5 min or at 900℃ for 30 min. The predominant martensite phases of β2 and β19' were observed in the microstructure of Ti-51at%Ni, and their existence varied in accordance with the sintering temperature and the holding time. In the DSC thermograms, multi-transformation peaks were observed during heating, whereas a single peak was observed during cooling; these peaks correspond to the presence of the β2, R, and β19' phases. The maximum strength and strain among the Ti-51at%Ni SMAs were 1376 MPa and 29%, respectively, for the sample sintered at 900℃ for 30 min because of this sample's minimal porosity.  相似文献   

12.
This study introduces a novel method of electric field sintering for preparing NdFeB magnets. NdFeB alloy compacts were all sintered by electric fields for 8 min at 1000℃ with different preset heating rates. The characteristics of electric field sintering and the effects of heating rate on the sintering densification of NdFeB alloys were also studied. It is found that electric field sintering is a new non-pressure rapid sintering method for preparing NdFeB magnets with fine grains at a relatively lower sintering temperature and in a shorter sintering time. Using this method, the sintering temperature and process of the compacts can be controlled accurately. When the preset heating rate increasing from 5 to 2000℃/s the densification of NdFeB sintered compacts gradually improves. As the preset heating rate is 2000℃/s, Nd-rich phases are small, dispersed and uniformly distributed in the sintered compact, and the magnet has a better microstructure than that made by conventional vacuum sintering. Also, the maximum energy product of the sintered magnet reaches 95% of conventionally vacuum sintered magnets.  相似文献   

13.
A new process called ‘NO x reduction by coupling combustion with recycling flue gas (RCCRF)’ was proposed to decrease NO x emission during the iron ore sintering process. The simulation test of NO x reduction was performed over sintered ore and in the process of coke combustion. Experimentally, NO x reduction was also carried out by sintering pot test. For sintered ore, the amount of NO x emission is reduced by 15wt%–25wt% at 400–550°C using 2.0vol% H2 or 2.0vol% CO, or reduced by 10wt%–30wt% at 560–720°C using 0.15vol% NH3. NO x reduction is around 10wt% by coupling combustion of pyrolysis gas and coke, or around 16wt% by recycling flue gas into coke combustion. By RCCRF, the maximum NO x reduction ratio is about 23wt% in coke combustion experiment and over 40wt% in sintering pot test.  相似文献   

14.
The mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering (SPS) were investigated. The results showed that the densities of the sintered composites gradually increased with increasing sintering temperature and that the highest microhardness and compressive strength were achieved in the specimen sintered at 450℃. CNTs dispersed uniformly in the AlSi10Mg matrix when the addition of CNTs was less than 1.5wt%. However, when the addition of CNTs exceeded 1.5wt%, the aggregation of CNTs was clearly observed. Moreover, the mechanical properties (including the densities, compressive strength, and microhardness) of the composites changed with CNT content and reached a maximum value when the CNT content was 1.5wt%. Meanwhile, the minimum average friction coefficient and wear rate of the CNT/AlSi10Mg composites were obtained with 1.0wt% CNTs.  相似文献   

15.
Despite the importance of aluminum alloys as candidate materials for applications in aerospace and automotive industries, very little work has been published on spark plasma and microwave processing of aluminum alloys. In the present work, the possibility was explored to process Al2124 and Al6061 alloys by spark plasma and microwave sintering techniques, and the microstructures and properties were compared. The alloys were sintered for 20 min at 400, 450, and 500℃. It is found that compared to microwave sintering, spark plasma sintering is an effective way to obtain homogenous, dense, and hard alloys. Fully dense (100%) Al6061 and Al2124 alloys were obtained by spark plasma sintering for 20 min at 450 and 500℃, respectively. Maximum relative densities were achieved for Al6061 (92.52%) and Al2124 (93.52%) alloys by microwave sintering at 500℃ for 20 min. The Vickers microhardness of spark plasma sintered samples increases with the increase of sintering temperature from 400 to 500℃, and reaches the values of Hv 70.16 and Hv 117.10 for Al6061 and Al2124 alloys, respectively. For microwave sintered samples, the microhardness increases with the increase of sintering temperature from 400 to 450℃, and then decreases with the further increase of sintering temperature to 500℃.  相似文献   

16.
HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reactor. When HyperCoal was used as a binder and pulverized coal was used as the raw material, the compressive strength of the hot-pressed briquettes(each with a diameter of 20 mm and mass of 5 g) under different conditions was studied using a hot-pressing mold and a high-temperature furnace. The compressive strength of the hot-pressed briquettes was substantially improved and reached 436 N when the holding time period was 15 min, the hot-pressing temperature was 673 K, and the HyperCoal content, was 15 wt%. Changes in the carbonaceous structure, as reflected by the intensity ratio between the Raman G-and D-bands(IG/ID), strongly affected the compressive strength of hot-pressed briquettes prepared at different hot-pressing temperatures. Compared with cold-pressed briquettes, hot-pressed briquettes have many advantages, including high compressive strength, low ash content, high moisture resistance, and good thermal stability; thus, we expect that hot-pressed briquettes will have broad application prospects.  相似文献   

17.
In this work, a systematic investigation was performed on the structural, mechanical and corrosion properties of CNT incorporated 304 stainless steel. Various concentrations of CNT from 0.5 to 4 wt% were incorporated into the 304 stainless steel matrix to investigate the feasibility of fabrication and enhancement of strength and other material properties. The fabrication of CNT-steel composite was achieved through a spark plasma sintering process at a sintering temperature of 800℃. Raman and morphological studies confirmed that the CNT structure was retained in the sintered pellets. Optimum performance was found at 0.5 wt% CNT giving a Vickers hardness of 351 Hv and compressive yield strength of 404 MPa which were 5.5 and 2.0 times, respectively, those of pristine steel. Corrosion studies with 3.5 wt% Na Cl solution revealed a slight increase in the corrosion rate for CNT dispersed samples.  相似文献   

18.
ZnO-modified (Li, Na, K)NbO3 lead-free ceramics with a nominal composition of Li0.06(Na0.535K0.48)0.94NbO3+0.7mol% ZnO (LNKN-Z7) was synthesized normally at 930?C1000°C. The Zn ions incorporated into the A-site at a higher sintering temperature, which changed LNKN-Z7 to soft piezoelectric ceramics with the mechanical quality factor decreasing from 228 to 192. A phase transition from tetragonal to orthorhombic symmetry was identified by XRD analysis, and the corresponding calculation of lattice parameters was conducted at 970?C980°C. Because of such transitional behavior and fine microstructure, the optimized values of piezoelectric coefficient, planar electromechanical coupling coefficient, and relative dielectric constant were obtained.  相似文献   

19.
对高炉灰在直接还原焙烧-弱磁选工艺中用作印尼某海滨钛磁铁矿还原剂的可行性及其机理进行研究.结果表明,以萤石为添加剂的条件下,高炉灰可代替煤做还原剂,通过高炉灰与萤石的共同作用,可以在直接还原过程中提高还原铁粉中铁的回收率及品位并降低TiO2质量分数,同时回收高炉灰中铁.三种不同产地高炉灰还原效果的比较表明,高炉灰性质对还原效果有影响.在相同用量条件下,津鑫高炉灰( JX)还原效果最好;在JX高炉灰用量30%、萤石用量10%、焙烧温度1250益以及焙烧时间为60 min时,焙烧产物通过两段磨矿和两段磁选,最终得到最佳的还原铁粉中铁品位为91.28%,TiO2质量分数降至0.93%,包括海滨砂矿和高炉灰中铁的铁总回收率达到89.19%.  相似文献   

20.
In this study,the mechanical and wear properties of AISI 316L stainless steel implant materials,produced by powder metallurgy(P/M),were investigated.AISI 316L stainless steel powder was cold-pressed with 800 MPa of pressure and then sintered at 1200,1250 and 1300°C for 30 min as three sample groups.The microstructure,and mechanical and wear properties of the resulting steels were investigated.Light optical and scanning electron microscopiese were used to characterize the microstructure of the steels.Room temperature mechanical properties of the steels were determined by hardness measurements and impact tests.Wear was determined using the pin-on-disc wear test,and the results were evaluated according to weight loss.The results indicate that the sintering temperature,time and atmosphere are important parameters that affect the porous ratio of materials produced by P/M.Sintering at high temperature can eliminate small pores and make the residual pores spherical.The wear tests showed that the wear of the AISI 316L stainless steel implants changed depending on the sintering temperature and load.Spherical pores in the samples increase the wear resistance.Moreover,decreasing the porosity ratio of these materials improves all of their mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号