首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Objections to the use of historical case studies for philosophical ends fall into two categories. Methodological objections claim that historical accounts and their uses by philosophers are subject to various biases. We argue that these challenges are not special; they also apply to other epistemic practices. Metaphysical objections, on the other hand, claim that historical case studies are intrinsically unsuited to serve as evidence for philosophical claims, even when carefully constructed and used, and so constitute a distinct class of challenge. We show that attention to what makes for a canonical case can address these problems. A case study is canonical with respect to a particular philosophical aim when the features relevant to that aim provide a reasonably complete causal account of the results of the historical process under investigation. We show how to establish canonicity by evaluating relevant contingencies using two prominent examples from the history of science: Eddington’s confirmation of Einstein’s theory of general relativity using his data from the 1919 eclipse and Watson and Crick’s determination of the structure of DNA.  相似文献   

2.
The 1935 conflict on the nature of relativistic degeneracy that pitted Subrahmanyan Chandrasekhar against Arthur Stanley Eddington is part of astronomical lore. In recountings of the events surrounding the dispute, the complaint is frequently aired that Chandrasekhar, who faced the pre-eminent astrophysicist of his time, did not enjoy the support of the astronomical community, which opted to side instead with Eddington. We reconsider these statements in the light of the published record and argue that the reception of Chandrasekhar's ideas was, if anything, rather favourable and that any perceived lack of support may have been due in great part to the inability to distinguish, on an observational basis, between the predictions of the competing theories. We further argue that the observational situation improved little over the subsequent thirty years, but that this did not prevent Chandrasekhar's version of relativistic degeneracy, and associated theory of electron-degenerate stars, from gaining a central position within the realm of stellar structure and evolution. We briefly compare this status to that enjoyed by general relativity before 1960.  相似文献   

3.
This paper sets out to show how Eddington's early twenties case for variational derivatives significantly bears witness to a steady and consistent shift in focus from a resolute striving for objectivity towards “selective subjectivism” and structuralism. While framing his so-called “Hamiltonian derivatives” along the lines of previously available variational methods allowing to derive gravitational field equations from an action principle, Eddington assigned them a theoretical function of his own devising in The Mathematical Theory of Relativity (1923). I make clear that two stages should be marked out in Eddington's train of thought if the meaning of such variational derivatives is to be adequately assessed. As far as they were originally intended to embody the mind's collusion with nature by linking atomicity of matter with atomicity of action, variational derivatives were at first assigned a dual role requiring of them not only to express mind's craving for permanence but also to tune up mind's privileged pattern to “Nature's own idea”. Whereas at a later stage, as affine field theory would provide a framework for world-building, such “Hamiltonian differentiation” would grow out of tune through gauge-invariance and, by disregarding how mathematical theory might precisely come into contact with actual world, would be turned into a mere heuristic device for structural knowledge.  相似文献   

4.
5.
In the early days of general relativity, several of Einstein׳s readers misunderstood the role of coordinates or “mesh-system” in ways that threatened the basic predictions of the theory. This confusion largely derived from intrinsic defects of Einstein׳s first systematic exposition of his theory. A few of Einstein׳s followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive difficulties and solved them by combining a deeply geometrical understanding of the theory with detailed attention to the concrete conditions of measurement.  相似文献   

6.
We distinguish two orientations in Weyl's analysis of the fundamental role played by the notion of symmetry in physics, namely an orientation inspired by Klein's Erlangen program and a phenomenological-transcendental orientation. By privileging the former to the detriment of the latter, we sketch a group(oid)-theoretical program—that we call the Klein-Weyl program—for the interpretation of both gauge theories and quantum mechanics in a single conceptual framework. This program is based on Weyl's notion of a “structure-endowed entity” equipped with a “group of automorphisms”. First, we analyze what Weyl calls the “problem of relativity” in the frameworks provided by special relativity, general relativity, and Yang-Mills theories. We argue that both general relativity and Yang-Mills theories can be understood in terms of a localization of Klein's Erlangen program: while the latter describes the group-theoretical automorphisms of a single structure (such as homogenous geometries), local gauge symmetries and the corresponding gauge fields (Ehresmann connections) can be naturally understood in terms of the groupoid-theoretical isomorphisms in a family of identical structures. Second, we argue that quantum mechanics can be understood in terms of a linearization of Klein's Erlangen program. This stance leads us to an interpretation of the fact that quantum numbers are “indices characterizing representations of groups” ((Weyl, 1931a), p.xxi) in terms of a correspondence between the ontological categories of identity and determinateness.  相似文献   

7.
At the time of Heinrich Hertz's premature death in 1894, he was regarded as one of the leading scientists of his generation. However, the posthumous publication of his treatise in the foundations of physics, Principles of Mechanics, presents a curious historical situation. Although Hertz's book was widely praised and admired, it was also met with a general sense of dissatisfaction. Almost all of Hertz's contemporaries criticized Principles for the lack of any plausible way to construct a mechanism from the “hidden masses” that are particularly characteristic of Hertz's framework. This issue seemed especially glaring given the expectation that Hertz's work might lead to a model of the underlying workings of the ether.In this paper I seek an explanation for why Hertz seemed so unperturbed by the difficulties of constructing such a mechanism. In arriving at this explanation, I explore how the development of Hertz's image-theory of representation framed the project of Principles. The image-theory brings with it an austere view of the “essential content” of mechanics, only requiring a kind of structural isomorphism between symbolic representations and target phenomena. I argue that bringing this into view makes clear why Hertz felt no need to work out the kinds of mechanisms that many of his readers looked for. Furthermore, I argue that a crucial role of Hertz's hypothesis of hidden masses has been widely overlooked. Far from acting as a proposal for the underlying structure of the ether, I show that Hertz's hypothesis ruled out knowledge of such underlying structure.  相似文献   

8.
The standard account portrays Hans Reichenbach's argument for geometric conventionalism as based upon general epistemological concerns of verifiability. As such, his version of conventionalism ought to be equally well applicable to all theories that posit a geometric structure to space–time. But when Reichenbach's writings from the period between the publication of Relativitätstheorie und Erkenntnis Apriori and Axiomatik der Raum-Zeit-Lehre, i.e., between 1920 and 1924, are examined, a very different picture emerges. The argument for the conventionality of geometry that appears in these writings is tied to discussions of the theory of general relativity and Reichenbach explicitly argues that geometry in Minkowski space–time is not conventional once the definition of simultaneity is put in place. In light of this, the received interpretation of Reichenbach's position needs to be replaced with a theory-specific picture of geometric conventionalism. This change has interesting consequences for both the standard arguments against Reichenbach's view and for questions in Reichenbach scholarship.  相似文献   

9.
Special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it shows that various phenomena that were given a dynamical explanation in Lorentz's theory are actually kinematical. In his book, Physical Relativity, Harvey Brown challenges this orthodox view. I defend it. The phenomena usually discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena in the same class, each of which played a role in the early reception of special relativity in the physics literature: the Fresnel drag effect, the velocity dependence of electron mass, and the torques on a moving capacitor in the Trouton–Noble experiment. I offer historical sketches of how Lorentz's dynamical explanations of these phenomena came to be replaced by their now standard kinematical explanations. I then take up the philosophical challenge posed by the work of Harvey Brown and Oliver Pooley and clarify how those kinematical explanations work. In the process, I draw attention to the broader importance of the kinematics–dynamics distinction.  相似文献   

10.
Books received     
R. P. de Lamanon was trained in theology and philosophy, but he chose the career of a self-taught geologist/naturalist, later adding experimental physics to his skills. Recommended by Condorcet, Secretary to the Académie Royale des Sciences, for the post of ‘Naturaliste’ on La Pérouse's expedition, he carried out delicate measurements at sea requested by the Académie and made two important discoveries: the barometric tide at the equator, and the variation of magnetic intensity with latitude. Killed by natives of Samoa in 1787, his reports were long delayed in publication, inadequately presented, and some even lost. Except for brief recognition by von Humboldt many years later, Lamanon's pioneering measurements have been largely ignored or forgotten. This paper revives his memory.  相似文献   

11.
Hume's essay ‘Of Miracles’ has been a focus of controversy ever since its publication. The challenge to Christian orthodoxy was only too evident, but the balance-of-probabilities criterion advanced by Hume for determining when testimony justifies belief in miracles has also been a subject of contention among philosophers. The temptation for those familiar with Bayesian methodology to show that Hume's criterion determines a corresponding balance-of-posterior probabilities in favour of miracles is understandable, but I will argue that their attempts fail. However, I show that his criterion generates a valid form of the so-called No-Miracles Argument appealed to by modern realist philosophers, whose own presentation of it, despite their possession of the probabilistic machinery Hume himself lacked, is invalid.  相似文献   

12.
Einstein proclaimed that we could discover true laws of nature by seeking those with the simplest mathematical formulation. He came to this viewpoint later in his life. In his early years and work he was quite hostile to this idea. Einstein did not develop his later Platonism from a priori reasoning or aesthetic considerations. He learned the canon of mathematical simplicity from his own experiences in the discovery of new theories, most importantly, his discovery of general relativity. Through his neglect of the canon, he realised that he delayed the completion of general relativity by three years and nearly lost priority in discovery of its gravitational field equations.  相似文献   

13.
Der Raum, Carnap’s earliest published work, finds him largely a follower of Husserl. In particular, he holds a distinctively Husserlian conception of the synthetic a priori—a view, I will suggest, paradigmatic of what he would later reject as ‘metaphysics’. His main purpose is to reconcile that Husserlian view with the theory of general relativity. On the other hand, he has already broken with Husserl, and in ways which foreshadow later developments in his thought. Especially important in this respect is his use of Hans Driesch’s Ordnungslehre.  相似文献   

14.
I reappraise in detail Hertz's cathode ray experiments. I show that, contrary to Buchwald's (1995) evaluation, the core experiment establishing the electrostatic properties of the rays was successfully replicated by Perrin (probably) and Thomson (certainly). Buchwald's discussion of ‘current purification’ is shown to be a red herring. My investigation of the origin of Buchwald's misinterpretation of this episode reveals that he was led astray by a focus on what Hertz ‘could do’—his experimental resources. I argue that one should focus instead on what Hertz wanted to achieve—his experimental goals. Focusing on these goals, I find that his explicit and implicit requirements for a successful investigation of the rays’ properties are met by Perrin and Thomson. Thus, even by Hertz's standards, they did indeed replicate his experiment.  相似文献   

15.
By means of an example, special relativity and presentism, I argue for the importance of reading history of physics as a contribution to philosophy, and for the fruitfulness of this approach to doing integrated history and philosophy of science. Within philosophy of physics, presentism is widely regarded as untenable in the light of special relativity. I argue that reading Newton's Principia as a contribution to philosophy reveals a law-constitutive approach to the unity of what there is, from which an alternative approach to presentism within physics emerges. This view respects the methodological and epistemological commitments of philosophy of physics in “taking special relativity seriously”, but proposes an alternative approach to the status of spacetime (as epistemic) and to the ground of what is real (law-constitution). While this approach to presentism does not preserve all of the contemporary presentist desiderata, it offers the possibility that the spatiotemporal extent of an existing thing is less than its entire history as represented in the block universe. I argue that the approach warrants further philosophical investigation.  相似文献   

16.
The physiologist Claude Bernard was an important nineteenth-century methodologist of the life sciences. Here I place his thought in the context of the history of the vera causa standard, arguably the dominant epistemology of science in the eighteenth and early nineteenth centuries. Its proponents held that in order for a cause to be legitimately invoked in a scientific explanation, the cause must be shown by direct evidence to exist and to be competent to produce the effects ascribed to it. Historians of scientific method have argued that in the course of the nineteenth century the vera causa standard was superseded by a more powerful consequentialist epistemology, which also admitted indirect evidence for the existence and competence of causes. The prime example of this is the luminiferous ether, which was widely accepted, in the absence of direct evidence, because it entailed verified observational consequences and, in particular, successful novel predictions. According to the received view, the vera causa standard's demand for direct evidence of existence and competence came to be seen as an impracticable and needless restriction on the scope of legitimate inquiry into the fine structure of nature. The Mill-Whewell debate has been taken to exemplify this shift in scientific epistemology, with Whewell's consequentialism prevailing over Mill's defense of the older standard. However, Bernard's reflections on biological practice challenge the received view. His methodology marked a significant extension of the vera causa standard that made it both powerful and practicable. In particular, Bernard emphasized the importance of detection procedures in establishing the existence of unobservable entities. Moreover, his sophisticated notion of controlled experimentation permitted inferences about competence even in complex biological systems. In the life sciences, the vera causa standard began to flourish precisely around the time of its alleged abandonment.  相似文献   

17.
18.
I show how quantum mechanics, like the theory of relativity, can be understood as a ‘principle theory’ in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World.  相似文献   

19.
This paper compares the axiomatic method of David Hilbert and his school with Rudolf Carnap's general axiomatics that was developed in the late 1920s, and that influenced his understanding of logic of science throughout the 1930s, when his logical pluralism developed. The distinct perspectives become visible most clearly in how Richard Baldus, along the lines of Hilbert, and Carnap and Friedrich Bachmann analyzed the axiom system of Hilbert's Foundations of Geometry—the paradigmatic example for the axiomatization of science. Whereas Hilbert's axiomatic method started from a local analysis of individual axiom systems in which the foundations of mathematics as a whole entered only when establishing the system's consistency, Carnap and his Vienna Circle colleague Hans Hahn instead advocated a global analysis of axiom systems in general. A primary goal was to evade, or formalize ex post, mathematicians' ‘material’ talk about axiom systems for such talk was held to be error-prone and susceptible to metaphysics.  相似文献   

20.
In this paper, I draw on philosophy of science to address a challenge for science communication. Empirical research indicates that some people who trust a meteorologist's report that they are in the path of a storm do not trust a climate scientist's report that we are on a path to global warming. Such selective skepticism about climate science exemplifies a more general challenge:
The Challenge of Selective UptakeLaypersons who generally accept public scientific testimony nevertheless fail to accept public scientific testimony concerning select, equally well warranted, scientific hypotheses.
A prominent response arising from the novel interdisciplinary science of science communication is a principle called Consensus Reporting. According to this principle, science reporters should, whenever feasible, report the scientific consensus or lack thereof for a reported scientific view.However, philosophy of science may offer a different perspective on the issue. This perspective is critical insofar as it indicates some inadequacies of Consensus Reporting. But it is also constructive insofar as it guides the development of an alternative principle, Justification Reporting, according to which science reporters should, whenever feasible, report aspects of the nature and strength of scientific justification or lack thereof for a reported scientific view. A central difference between these proposals is that Consensus Reporting appeals to the authority of the scientists whereas Justification Reporting appeals to the authority of scientific justification. As such, Justification Reporting reflects the image of science.The paper considers the philosophical and empirical motivation for Justification Reporting and its limitations. This includes prospects and problems for implementing it in a way that addresses The Challenge of Selective Uptake. From a methodological point of view, the paper illustrates how empirically informed philosophy of science may help address challenges for science communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号