首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过对掺与不掺矿物掺合料的水泥砂浆分别在电脉冲和浸泡条件下进行外观和强度比较,研究了电脉冲作用下矿物掺合料对水泥砂浆硫酸盐侵蚀的影响,并利用扫描电镜和能谱仪对试件内部进行了微观结构分析.试验结果表明:电脉冲加速了外部SO_4~(2-)向砂浆内部迁移,SO_4~(2-)与水泥水化产物反应生成大量钙矾石,使得试件短时间内出现明显的开裂、脱落以及强度损失;矿物掺合料改善了砂浆的抗硫酸盐侵蚀性能,掺量越高改善效果越明显,然而在电脉冲作用下掺矿物掺合料的砂浆仍受到明显的硫酸盐侵蚀.可见,电脉冲加速了硫酸盐侵蚀,这为快速评价水泥基材料的抗硫酸盐侵蚀性能提供了新的思路.  相似文献   

2.
采用硫酸钠溶液长期浸泡的方式,并通过测试砂浆抗压强度变化特征,研究再生细骨料掺量对砂浆抗硫酸盐侵蚀性能的影响,同时利用IR光谱、XRD衍射以及SEM等微观测试技术对其损伤破坏机理进行分析.研究结果表明:砂浆的抗硫酸盐侵蚀性能随着再生细骨料掺量的增大而下降,当掺量大于40%时,下降尤为明显.微观测试分析表明:再生细骨料砂浆发生硫酸盐侵蚀破坏是钙矾石和石膏等腐蚀产物的共同作用结果,然而当再生细骨料掺量较低时(20%),钙矾石为破坏的主导因素,随着掺量的增加(≥60%),石膏成为破坏的主导因素;此外,上述腐蚀产物的数量随再生细骨料掺量的增多而增加.  相似文献   

3.
锂渣粉对碱-硅反应的抑制效果及其自身微膨胀的分离   总被引:2,自引:0,他引:2  
为了客观评价锂渣粉抑制碱-硅反应(ASR)的效果,进行了锂渣粉抑制ASR的试验和分离锂渣粉自身微膨胀的试验.用砂浆棒快速法对比了锂渣粉与粉煤灰单掺或复掺对ASR的抑制效果,当掺量为20%时,锂渣粉的抑制效果为76%,而粉煤灰的抑制效果可达93%,表明同掺量下锂渣粉对ASR的抑制效果远不如粉煤灰.采用砂浆棒快速法,使用非活性大理岩骨料测试在锂渣粉掺量为0,10%,20%,30%时的膨胀率,计算得到不同掺量下锂渣粉产生的微膨胀(膨胀率约0.005%~0.015%),然后从相应锂渣粉掺量下采用活性砂岩骨料时的膨胀率中减去锂渣粉的微膨胀,从而从锂渣粉抑制活性骨料ASR效能试验的膨胀值中分离出锂渣粉产生的自身微膨胀.采用60℃快速混凝土棱柱体法,进一步证实了混凝土中锂渣粉导致的早期微膨胀以及锂渣粉对ASR的抑制效果.结果表明:锂渣粉会导致砂浆或者混凝土在早期发生微膨胀;测试锂渣粉抑制ASR的效果时,需分离这种微膨胀;锂渣粉掺量为30%以上时,可有效抑制砂岩骨料的ASR,抑制效果约89%,略逊于同掺量粉煤灰的典型抑制效果.  相似文献   

4.
针对混凝土的新病害———碱骨料反应这一问题,对配制的高性能混凝土原材料进行了岩相法测试和快速砂浆棒试验,得出了该骨料具有碱活性。通过掺加不同比例粉煤灰代替水泥制作的砂浆棒试验,得出了砂浆棒膨胀率与粉煤灰的掺量及龄期有关。粉煤灰的掺量(质量分数≤30%)越多,龄期越短,砂浆棒膨胀率越小。结合数理统计分析方法,研究了粉煤灰和龄期两种因素对混凝土碱骨料反应的影响程度。研究结果表明:粉煤灰掺量和龄期均对混凝土碱骨料反应有非常显著的影响。在混凝土施工中,掺入适量的粉煤灰对抑制碱骨料反应是有效的。  相似文献   

5.
氯盐、硫酸盐溶液长期腐蚀下混凝土组成的生态控制   总被引:1,自引:0,他引:1  
为解决材料与腐蚀溶液的相适应性,用3.5%NaCl溶液、3.5%NaCl与5.0%Na2SO4两种不同的腐蚀溶液对掺有不同工业废渣的生态混凝土进行长期浸泡,测试矿物掺合料含量的变化对混凝土依时扩散系数的影响.以混凝土的服役寿命为目标,确定混凝土中矿物掺合料的最佳掺量.结果表明,材料的种类和掺量以及腐蚀溶液的变化对混凝土服役寿命具有非常显著的影响,矿物掺合料掺量可以用3次多项式进行材料参数的表征;在腐蚀溶液相同,且当掺量均为30%时,粉煤灰混凝土的抗氯离子能力好于矿粉混凝土的抗氯离子能力;在3.5%NaCl溶液中,选用30%粉煤灰混凝土抗氯离子侵蚀能力较好;在3.5%NaCl和5.0%Na2SO4复合溶液中,选用30%粉煤灰和20%矿粉复掺的混凝土更能使混凝土结构耐久.  相似文献   

6.
模拟中国硫酸型酸雨情况,以普硅水泥空白砂浆为参比体系,研究改性高钙粉煤灰对改善混凝土抗酸性能的影响,从宏观和微观方面研究各性能变化规律.结果表明:高钙粉煤灰对建筑物抗酸腐蚀有优化效果,但掺量存在最佳优化区间和"拐点";掺量w(高钙灰)=25%的砂浆腐蚀98d后质量损失率仅-2.011%,而相同腐蚀条件下空白砂浆的质量损失率为-5.120 %;98d抗压强度和抗折强度是空白砂浆的1.31倍和1.47倍;机理分析发现高钙灰中大量的活性钙可作为缓冲组分,减缓体系由碱性环境变成酸性或中性环境的速度,从而阻止其他水化产物因pH值降低而产生的不稳定溶蚀现象;微细CaO颗粒会反应生成CaSO4沉积在试块表面,既解决膨胀破坏问题又堵塞了酸液的入侵通道.  相似文献   

7.
贵州II级粉煤灰排放量多且分布广。为了明确各地区II级粉煤灰的差异性及对砂浆力学性能和孔结构参数的影响,采用都匀粉煤灰、大方粉煤灰、鸭溪粉煤灰和六盘水粉煤灰等质量替代水泥,探讨粉煤灰掺量对砂浆力学性能、吸水量和孔结构参数的影响,并分析其作用机理。结果表明:粉煤灰的掺入显著降低砂浆的抗折强度和抗压强度,掺量以20%为宜,但抗折强度与抗压强度之比不断增长,抗折强度为抗压强度的1/4~1/5.8。粉煤灰种类和掺量对砂浆吸水量、孔径均匀性和平均孔径的影响规律不同,但粉煤灰砂浆的吸水量高于纯水泥砂浆。粉煤灰在砂浆中的作用可简述为形态作用、填充作用和火山灰效应,文中4种II级粉煤灰的活性较低,在砂浆中主要以填充作用为主。  相似文献   

8.
采用试验方法,研究了玻璃粉替代胶凝材料在不同掺量(0、5%、8%、15%)时对混凝土抗压强度和耐酸侵蚀性的影响。对比了各个试样在5%H2SO4溶液和5%CH3COOH溶液中腐蚀28 d后的质量亏损和抗压强度损失,并采用SEM分析了试样腐蚀后的表面形貌。结果表明,玻璃粉有利于提高混凝土的耐H2SO4和CH3COOH侵蚀性,耐CH3COOH侵蚀差于耐H2SO4腐蚀,H2SO4侵蚀后的试样表面形成了大量石膏,CH3COOH侵蚀后试样表面疏松并出现了大量孔洞和裂纹。当玻璃粉掺量为8%时,试样的耐H2SO4和CH3COOH侵蚀性最佳。  相似文献   

9.
以试验室焙烧锂辉石(DS)为原材料,研究了在40 ℃和80 ℃养护条件下,单掺DS和双掺DS与粉煤灰(FA)取代部分水泥,对沸石化珍珠岩集料和某高活性集料M成型不同砂浆碱集料反应膨胀的影响.试验表明:碱含量为2.5%时,在40 ℃和80 ℃养护条件下,DS掺量10%对沸石化珍珠岩集料砂浆试件ASR有效抑制,90 d龄期时试件膨胀值仍小于0.1%.DS掺量10%对高活性集料M砂浆试件ASR抑制效果不大.养护温度不同膨胀值变化趋势不同.DS掺量固定,随着FA掺量的增加,对2种集料砂浆碱集料反应膨胀抑制效果越好.  相似文献   

10.
研究海城和莱州菱镁矿尾矿在950℃煅烧1 h制备的MgO膨胀剂(MEA)对砂浆试件膨胀性能和强度的影响规律,并分析掺MgO膨胀剂水泥浆体中MgO的水化程度。结果表明:海城MgO膨胀剂(HC-MEA)中MgO活性高,水化快,掺HC-MEA砂浆90 d膨胀比较大,90~150 d膨胀增长趋势减缓;莱州MgO膨胀剂(LZ-MEA)中MgO活性低,水化慢,掺LZ-MEA砂浆60 d膨胀比较小,60~150 d膨胀发展较快; MEA掺量相同时,掺HC-MEA砂浆试件的膨胀率大于掺LZ-MEA砂浆试件的膨胀率。粉煤灰能抑制掺MEA砂浆试件的膨胀,抑制作用随养护温度的升高或MEA掺量的增加而减小。与未掺MEA砂浆相比,掺8%HC-MEA砂浆的90 d抗压、抗折强度分别提高了5. 84%和1. 12%,掺8%LZ-MEA砂浆的90 d抗压、抗折强度分别提高了1. 84%和4. 24%。  相似文献   

11.
粉煤灰砂浆早期抗压强度试验研究   总被引:2,自引:0,他引:2  
根据不同配合比研制的粉煤灰掺量13.6%的3组,粉煤灰掺量11.5%的3组,共6组M5粉煤灰砂浆.经过3天自然养护,对其进行了抗压强度试验,研究粉煤灰砂浆早期抗压强度的影响因素.试验研究表明:引气剂(微沫剂)掺入会降低粉煤灰砂浆的早期强度.减水剂的掺入可以提高粉煤灰砂浆的早期强度.减水剂掺量一定时,水胶比越小,粉煤灰水泥的早期抗压强度越高.从6组试件中选出28天抗压强度可达M5以上的粉煤灰砂浆,其配合比为:水泥:粉煤灰:轻砂:水:微沫剂:减水剂=1:0.7:4.4:2.0:0.00326:0.096.  相似文献   

12.
粉煤灰品质与抑制ASR膨胀的能力   总被引:1,自引:0,他引:1  
对比研究了2类、4种粉煤的化学和矿物组成、颗粒形貌和级配及抑制碱硅酸反应(ASR)膨胀的效果,讨论了粉煤灰品质与抑制ASR膨胀的关系。结果表明:相同掺量时,低钙粉煤灰抑制ASR能力优于高钙粉煤灰;粉煤灰同一品质指标对不同类型粉煤灰抑制ASR能力的影响不同,不同粉煤灰抑制ASR能力的差异不能简单归结为某一特定品质指标的差别,特别是品质指标绝对值及差别不大时。  相似文献   

13.
为了研究纳米高岭土对砂浆抗酸雨腐蚀性能的影响,配置pH值为1.5的硫酸硝酸混合溶液以模拟酸雨环境,研究了模拟酸雨环境下包含不同纳米高岭土掺量(0,1%,3%,5%)的砂浆试件的物理力学性质.利用场发射扫描电镜分析了酸性介质侵蚀过程中砂浆材料微观结构的变化规律,探讨了纳米高岭土对砂浆抗酸雨腐蚀性能的改善机理.试验结果表明:纳米高岭土能够改善砂浆的微观结构,提高砂浆基体密实性,掺入水泥质量1%的纳米高岭土砂浆试件抗压强度提高了21%;同时,还能有效阻碍H+和SO2-4进入砂浆基体内部,减弱了H+引起的溶蚀破坏以及SO2-4引起的膨胀破坏,显著提高砂浆抗酸雨腐蚀能力.酸雨腐蚀60 d后,掺入水泥质量1%的纳米高岭土砂浆试件表面溶蚀现象减弱,强度损失率较普通砂浆试件降低27.23%.  相似文献   

14.
用扫描电子显微镜/能量色散谱(SEM/EDS),超级场发射电子显微镜(Super FE-S叫)研究了H2SO4与粉煤灰的固相反应.常温反应后,单个粉煤灰表面微区有明显的溶解点,粉煤灰在一定程度上出现粘结、结块现象.反应前后粉煤灰的组成变化不大,表明固相反应仅在粉煤灰表面进行,未渗入到颗粒内部.反应后所得水溶物主要是Al2(SO4)3、Fe 2(S04),.当反应温度达到200℃时,扫描电镜可观察到粉煤灰表面产生块状Al2(SO4)3、Fe 2(SO4)3结晶.250℃下反应产生的结晶物明显多于200℃,且导电性明显提高.热力学计算和表面纳米观测技术都表明,粉煤灰表面的铝、铁氧化物转化成可溶性的硫酸盐,氧化硅未参与化学反应.  相似文献   

15.
高炉矿渣细粉对粉煤灰硬化体中Cr(Ⅵ)溶出的抑制   总被引:1,自引:0,他引:1  
研究了两种高炉矿渣细粉对泥浆型粉煤灰硬化体和干硬击实成型粉煤灰硬化体中Cr(Ⅵ)溶出的抑制效果.结果表明:(1)经适当处理的高炉矿渣细粉能有效抑制粉煤灰硬化体中Cr(Ⅵ)的溶出;(2)溶出抑制的效果与粉煤灰的种类、硬化体制备方法以及矿渣的细度和掺量有关;(3)矿渣细粉与普通硅酸盐水泥复掺时,抑制效果更佳;(4)一般来说,养护龄期延长,硬化体中Cr(Ⅵ)的溶出量减少、同时发现,硬化体中钙矾石和C—S—H凝胶粒子等的生成,对固化稳定Cr(Ⅵ)离子和防止其溶出作用.  相似文献   

16.
对掺固硫灰干粉砂浆的性能进行了研究。讨论了固硫灰细度、掺量及与粉煤灰复掺对干粉砂浆工作性能、力学性能和膨胀性的影响。结果表明:经预处理固硫灰可以应用于干粉砂浆中,且掺量为10%时效果最佳。固硫灰与粉煤灰等矿物掺合料复掺可以改善干粉砂浆性能。  相似文献   

17.
马海彬  徐晨 《科学技术与工程》2023,23(23):10067-10074
为了研究粉煤灰与矿渣对水泥砂浆动态力学性能的影响,用粉煤灰与矿渣替代40%的胶凝材料,其中矿渣掺量分别为0、10%、20%、30%、40%,采用?50 mm的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)试验装置,对各组砂浆进行4种加载气压的冲击压缩试验,并测试砂浆的静态抗压强度。对不同冲击气压下的应力-应变曲线、动态强度增长因子(dynamic increase factor, DIF)和破坏形态进行分析。结果表明:随着矿渣掺量的增加,砂浆的静动态抗压强度均随之增大,掺量为30%~40%时已接近甚至超过对照组砂浆,但动态抗压强度提升幅度有减缓趋势;相同矿渣掺量下,砂浆的动态峰值应力、动态峰值应变、平均应变率和极限韧性均与冲击荷载大小呈正相关,有明显的应变率效应;平均应变率在91.15~158.34 s-1时,掺30%~40%矿渣砂浆的动态抗压强度和DIF均高于对照组;冲击气压越大,砂浆破坏程度越高,掺30%~40%矿渣砂浆的碎块数量更少、尺寸更大。因此掺30%~40%矿渣砂浆具有更优越的抗冲击性能,这为工业废料的合理利...  相似文献   

18.
通过测试不同硫酸钠掺量(0,2%,4%和6%)在不同龄期(3,7,28和56d)下中性钠盐粉煤灰水泥(NSFC)的抗压强度,研究标准养护下硫酸钠掺量对NSFC抗压强度的影响.通过XRD、SEM、孔结构和NMR等试验分析NSFC水化产物的种类和形貌、孔结构分布、净浆孔溶液pH值以及NSFC中普通硅酸盐水泥和粉煤灰的反应程度,揭示硫酸钠掺量对其水化程度和抗压强度的影响机理.研究表明,当硫酸钠掺量小于4%时,NSFC的碱性随硫酸钠掺量的增大而增强,粉煤灰在强碱环境中水化反应加速,C-S-H、钙矾石等生成量增加,有害孔和多害孔减少,微观结构变得密实,胶空比增大,抗压强度增大;当硫酸钠掺量增加到6%时,过量的钙矾石胀裂孔隙,有害孔和多害孔反而增加,胶空比减小,抗压强度减小.  相似文献   

19.
粉煤灰、矿渣复配组成碱激发复合水泥可以改善单一组分碱激发水泥的性能劣势。为了研究不同碱当量、不同粉煤灰和矿渣掺量对碱激发粉煤灰-矿渣砂浆力学性能、干燥收缩及微观结构特性的影响,采用抗压、抗折强度试验、吸水率试验、干燥收缩试验、微观扫描电子显微镜(scanning electron microscope, SEM)及傅里叶红外光谱(Fourier transform infrared spectrometer, FTIR)试验进行表征。结果表明:3、7、28 d龄期时,随着碱当量和矿渣掺量增加,粉煤灰-矿渣砂浆抗压、抗折强度呈逐渐增加趋势,吸水率和干燥收缩率呈逐渐下降趋势。其中龄期为28 d,碱当量为6%、矿渣掺量为100%时,碱激发粉煤灰-矿渣砂浆抗压强度达到峰值110.84 MPa,抗折强度达到峰值10.77 MPa,吸水率最小,为1.2%,与4%的粉煤灰-矿渣砂浆相比,碱当量为6%的砂浆干燥收缩率均减少10%以上。由微观分析知,粉煤灰-矿渣砂浆在碱激发作用下水化产物主要为铝硅酸盐凝胶和水化硅酸钙凝胶,粉煤灰掺量越大,凝胶结晶度越低。碱当量越大,体系水化产物数量越多,结构越密实。  相似文献   

20.
粉煤灰掺量与砂浆强度和水化参量的关系   总被引:4,自引:0,他引:4  
对水胶比为0.15,I级粉煤灰掺量分别占胶凝材料总量(质量分数)为0,0.20,0.30,0.45和0.55的砂浆试样,经标准养护(d)7,28,90,180和365时的抗压强度、浆体非蒸发水量和CH含量,进行了系统测试,试验数据经回归分析,发现粉煤灰掺量与砂浆抗压强度、非蒸发水量和CH含量之间,分别存在很好的线性相关关系,从中,可以定量研究在不同的粉煤灰掺量和养护龄期时,粉煤灰效应对大掺量粉煤灰水泥基材料的力学性能和水化进程的影响规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号