首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A database containing mapped partial cDNA sequences from Caenorhabditis elegans will provide a ready starting point for identifying nematode homologues of important human genes and determining their functions in C. elegans. A total of 720 expressed sequence tags (ESTs) have been generated from 585 clones randomly selected from a mixed-stage C. elegans cDNA library. Comparison of these ESTs with sequence databases identified 422 new C. elegans genes, of which 317 are not similar to any sequences in the database. Twenty-six new genes have been mapped by YAC clone hybridization. Members of several gene families, including cuticle collagens, GTP-binding proteins, and RNA helicases were discovered. Many of the new genes are similar to known or potential human disease genes, including CFTR and the LDL receptor.  相似文献   

2.
To test the hypothesis that the human genome project will uncover many genes not previously discovered by sequencing of expressed sequence tags (ESTs), we designed and produced a set of microarrays using probes based on open reading frames (ORFs) in 350 Mb of finished and draft human sequence. Our approach aims to identify all genes directly from genomic sequence by querying gene expression. We analysed genomic sequence with a suite of ORF prediction programs, selected approximately one ORF per gene, amplified the ORFs from genomic DNA and arrayed the amplicons onto treated glass slides. Of the first 10,000 arrayed ORFs, 31% are completely novel and 29% are similar, but not identical, to sequences in public databases. Approximately one-half of these are expressed in the tissues we queried by microarray. Subsequent verification by other techniques confirmed expression of several of the novel genes. Expressed sequence tags (ESTs) have yielded vast amounts of data, but our results indicate that many genes in the human genome will only be found by genomic sequencing.  相似文献   

3.
4.
A general approach to single-nucleotide polymorphism discovery   总被引:29,自引:0,他引:29  
Single-nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and a resource for mapping complex genetic traits. The large volume of data produced by high-throughput sequencing projects is a rich and largely untapped source of SNPs (refs 2, 3, 4, 5). We present here a unified approach to the discovery of variations in genetic sequence data of arbitrary DNA sources. We propose to use the rapidly emerging genomic sequence as a template on which to layer often unmapped, fragmentary sequence data and to use base quality values to discern true allelic variations from sequencing errors. By taking advantage of the genomic sequence we are able to use simpler yet more accurate methods for sequence organization: fragment clustering, paralogue identification and multiple alignment. We analyse these sequences with a novel, Bayesian inference engine, POLYBAYES, to calculate the probability that a given site is polymorphic. Rigorous treatment of base quality permits completely automated evaluation of the full length of all sequences, without limitations on alignment depth. We demonstrate this approach by accurate SNP predictions in human ESTs aligned to finished and working-draft quality genomic sequences, a data set representative of the typical challenges of sequence-based SNP discovery.  相似文献   

5.
The approach to annotating a genome critically affects the number and accuracy of genes identified in the genome sequence. Genome annotation based on stringent gene identification is prone to underestimate the complement of genes encoded in a genome. In contrast, over-prediction of putative genes followed by exhaustive computational sequence, motif and structural homology search will find rarely expressed, possibly unique, new genes at the risk of including non-functional genes. We developed a two-stage approach that combines the merits of stringent genome annotation with the benefits of over-prediction. First we identify plausible genes regardless of matches with EST, cDNA or protein sequences from the organism (stage 1). In the second stage, proteins predicted from the plausible genes are compared at the protein level with EST, cDNA and protein sequences, and protein structures from other organisms (stage 2). Remote but biologically meaningful protein sequence or structure homologies provide supporting evidence for genuine genes. The method, applied to the Drosophila melanogaster genome, validated 1,042 novel candidate genes after filtering 19,410 plausible genes, of which 12,124 matched the original 13,601 annotated genes. This annotation strategy is applicable to genomes of all organisms, including human.  相似文献   

6.
The number of genes in the human genome is unknown, with estimates ranging from 50,000 to 90,000 (refs 1, 2), and to more than 140,000 according to unpublished sources. We have developed 'Exofish', a procedure based on homology searches, to identify human genes quickly and reliably. This method relies on the sequence of another vertebrate, the pufferfish Tetraodon nigroviridis, to detect conserved sequences with a very low background. Similar to Fugu rubripes, a marine pufferfish proposed by Brenner et al. as a model for genomic studies, T. nigroviridis is a more practical alternative with a genome also eight times more compact than that of human. Many comparisons have been made between F. rubripes and human DNA that demonstrate the potential of comparative genomics using the pufferfish genome. Application of Exofish to the December version of the working draft sequence of the human genome and to Unigene showed that the human genome contains 28,000-34,000 genes, and that Unigene contains less than 40% of the protein-coding fraction of the human genome.  相似文献   

7.
Single-nucleotide polymorphisms (SNPs) have been explored as a high-resolution marker set for accelerating the mapping of disease genes. Here we report 48,196 candidate SNPs detected by statistical analysis of human expressed sequence tags (ESTs), associated primarily with coding regions of genes. We used Bayesian inference to weigh evidence for true polymorphism versus sequencing error, misalignment or ambiguity, misclustering or chimaeric EST sequences, assessing data such as raw chromatogram height, sharpness, overlap and spacing, sequencing error rates, context-sensitivity and cDNA library origin. Three separate validations-comparison with 54 genes screened for SNPs independently, verification of HLA-A polymorphisms and restriction fragment length polymorphism (RFLP) testing-verified 70%, 89% and 71% of our predicted SNPs, respectively. Our method detects tenfold more true HLA-A SNPs than previous analyses of the EST data. We found SNPs in a large fraction of known disease genes, including some disease-causing mutations (for example, the HbS sickle-cell mutation). Our comprehensive analysis of human coding region polymorphism provides a public resource for mapping of disease genes (available at http://www.bioinformatics.ucla.edu/snp).  相似文献   

8.
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or "ORFeomes," need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.  相似文献   

9.
A radiation hybrid map of the zebrafish genome.   总被引:12,自引:0,他引:12  
Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.  相似文献   

10.
A survey of expressed genes in Caenorhabditis elegans.   总被引:29,自引:0,他引:29  
As an adjunct to the genomic sequencing of Caenorhabditis elegans, we have investigated a representative cDNA library of 1,517 clones. A single sequence read has been obtained from the 5' end of each clone, allowing its characterization with respect to the public databases, and the clones are being localized on the genome map. The result is the identification of about 1,200 of the estimated 15,000 genes of C. elegans. More than 30% of the inferred protein sequences have significant similarity to existing sequences in the databases, providing a route towards in vivo analysis of known genes in the nematode. These clones also provide material for assessing the accuracy of predicted exons and splicing patterns and will lead to a more accurate estimate of the total number of genes in the organism than has hitherto been available.  相似文献   

11.
12.
DNA mismatch repair is important because of its role in maintaining genomic integrity and its association with hereditary non-polyposis colon cancer (HNPCC). To identify new human mismatch repair proteins, we probed nuclear extracts with the conserved carboxy-terminal MLH1 interaction domain. Here we describe the cloning and complete genomic sequence of MLH3, which encodes a new DNA mismatch repair protein that interacts with MLH1. MLH3 is more similar to mismatch repair proteins from yeast, plants, worms and bacteria than to any known mammalian protein, suggesting that its conserved sequence may confer unique functions in mice and humans. Cells in culture stably expressing a dominant-negative MLH3 protein exhibit microsatellite instability. Mlh3 is highly expressed in gastrointestinal epithelium and physically maps to the mouse complex trait locus colon cancer susceptibility I (Ccs1). Although we were unable to identify a mutation in the protein-coding region of Mlh3 in the susceptible mouse strain, colon tumours from congenic Ccs1 mice exhibit microsatellite instability. Functional redundancy among Mlh3, Pms1 and Pms2 may explain why neither Pms1 nor Pms2 mutant mice develop colon cancer, and why PMS1 and PMS2 mutations are only rarely found in HNPCC families.  相似文献   

13.
14.
The completed draft version of the human genome, comprised of multiple short contigs encompassing 85% or more of euchromatin, was announced in June of 2000 (ref. 1). The detailed findings of the sequencing consortium were reported several months later. The draft sequence has provided insight into global characteristics, such as the total number of genes and a more accurate definition of gene families. Also of importance are genome positional details such as local genome architecture, regional gene density and the location of transcribed units that are critical for disease gene identification. We carried out a series of mapping and computational experiments using a nonredundant collection of 925 expressed sequence tags (ESTs) and sections of the public draft genome sequence that were available at different timepoints between April 2000 and April 2001. We found discrepancies in both the reported coverage of the human genome and the accuracy of mapping of genomic clones, suggesting some limitations of the draft genome sequence in providing accurate positional information and detailed characterization of chromosomal subregions.  相似文献   

15.
We constructed a tiling resolution array consisting of 32,433 overlapping BAC clones covering the entire human genome. This increases our ability to identify genetic alterations and their boundaries throughout the genome in a single comparative genomic hybridization (CGH) experiment. At this tiling resolution, we identified minute DNA alterations not previously reported. These alterations include microamplifications and deletions containing oncogenes, tumor-suppressor genes and new genes that may be associated with multiple tumor types. Our findings show the need to move beyond conventional marker-based genome comparison approaches, that rely on inference of continuity between interval markers. Our submegabase resolution tiling set for array CGH (SMRT array) allows comprehensive assessment of genomic integrity and thereby the identification of new genes associated with disease.  相似文献   

16.
Analysis of expressed sequence tags indicates 35,000 human genes   总被引:18,自引:0,他引:18  
Ewing B  Green P 《Nature genetics》2000,25(2):232-234
The number of protein-coding genes in an organism provides a useful first measure of its molecular complexity. Single-celled prokaryotes and eukaryotes typically have a few thousand genes; for example, Escherichia coli has 4,300 and Saccharomyces cerevisiae has 6,000. Evolution of multicellularity appears to have been accompanied by a several-fold increase in gene number, the invertebrates Caenorhabditis elegans and Drosophila melanogaster having 19,000 and 13,600 genes, respectively. Here we estimate the number of human genes by comparing a set of human expressed sequence tag (EST) contigs with human chromosome 22 and with a non-redundant set of mRNA sequences. The two comparisons give mutually consistent estimates of approximately 35,000 genes, substantially lower than most previous estimates. Evolution of the increased physiological complexity of vertebrates may therefore have depended more on the combinatorial diversification of regulatory networks or alternative splicing than on a substantial increase in gene number.  相似文献   

17.
New genes involved in cancer identified by retroviral tagging   总被引:21,自引:0,他引:21  
Retroviral insertional mutagenesis in BXH2 and AKXD mice induces a high incidence of myeloid leukemia and B- and T-cell lymphoma, respectively. The retroviral integration sites (RISs) in these tumors thus provide powerful genetic tags for the discovery of genes involved in cancer. Here we report the first large-scale use of retroviral tagging for cancer gene discovery in the post-genome era. Using high throughput inverse PCR, we cloned and analyzed the sequences of 884 RISs from a tumor panel composed primarily of B-cell lymphomas. We then compared these sequences, and another 415 RIS sequences previously cloned from BXH2 myeloid leukemias and from a few AKXD lymphomas, against the recently assembled mouse genome sequence. These studies identified 152 loci that are targets of retroviral integration in more than one tumor (common retroviral integration sites, CISs) and therefore likely to encode a cancer gene. Thirty-six CISs encode genes that are known or predicted to be genes involved in human cancer or their homologs, whereas others encode candidate genes that have not yet been examined for a role in human cancer. Our studies demonstrate the power of retroviral tagging for cancer gene discovery in the post-genome era and indicate a largely unrecognized complexity in mouse and presumably human cancer.  相似文献   

18.
Complex SNP-related sequence variation in segmental genome duplications   总被引:23,自引:0,他引:23  
There is uncertainty about the true nature of predicted single-nucleotide polymorphisms (SNPs) in segmental duplications (duplicons) and whether these markers genuinely exist at increased density as indicated in public databases. We explored these issues by genotyping 157 predicted SNPs in duplicons and control regions in normal diploid genomes and fully homozygous complete hydatidiform moles. Our data identified many true SNPs in duplicon regions and few paralogous sequence variants. Twenty-eight percent of the polymorphic duplicon sequences we tested involved multisite variation, a new type of polymorphism representing the sum of the signals from many individual duplicon copies that vary in sequence content due to duplication, deletion or gene conversion. Multisite variations can masquerade as normal SNPs when genotyped. Given that duplicons comprise at least 5% of the genome and many are yet to be annotated in the genome draft, effective strategies to identify multisite variation must be established and deployed.  相似文献   

19.
The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号