首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Earth accretes about 30,000 tons of dust particles per year, with sizes in the range of 20-400 microm (refs 1, 2). Those particles collected at the Earth's surface--termed micrometeorites--are similar in chemistry and mineralogy to hydrated, porous meteorites, but such meteorites comprise only 2.8% of recovered falls. This large difference in relative abundances has been attributed to 'filtering' by the Earth's atmosphere, that is, the porous meteorites are considered to be so friable that they do not survive the impact with the atmosphere. Here we report shock-recovery experiments on two porous meteorites, one of which is hydrated and the other is anhydrous. The application of shock to the hydrated meteorite reduces it to minute particles and explosive expansion results upon release of the pressure, through a much broader range of pressures than for the anhydrous meteorite. Our results indicate that hydrated asteroids will produce dust particles during collisions at a much higher rate than anhydrous asteroids, which explains the different relative abundances of the hydrated material in micrometeorites and meteorites: the abundances are established before contact with the Earth's atmosphere.  相似文献   

2.
Yang J  Goldstein JI  Scott ER 《Nature》2007,446(7138):888-891
In our Solar System, the planets formed by collisional growth from smaller bodies. Planetesimals collided to form Moon-to-Mars-sized protoplanets in the inner Solar System in 0.1-1 Myr, and these collided more energetically to form planets. Insights into the timing and nature of collisions during planetary accretion can be gained from meteorite studies. In particular, iron meteorites offer the best constraints on early stages of planetary accretion because most are remnants of the oldest bodies, which accreted and melted in <1.5 Myr, forming silicate mantles and iron-nickel metallic cores. Cooling rates for various groups of iron meteorites suggest that if the irons cooled isothermally in the cores of differentiated bodies, as conventionally assumed, these bodies were 5-200 km in diameter. This picture is incompatible, however, with the diverse cooling rates observed within certain groups, most notably the IVA group, but the large uncertainties associated with the measurements do not preclude it. Here we report cooling rates for group IVA iron meteorites that range from 100 to 6,000 K Myr(-1), increasing with decreasing bulk Ni. Improvements in the cooling rate model, smaller error bars, and new data from an independent cooling rate indicator show that the conventional interpretation is no longer viable. Our results require that the IVA meteorites cooled in a 300-km-diameter metallic body that lacked an insulating mantle. This body probably formed approximately 4,500 Myr ago in a 'hit-and-run' collision between Moon-to-Mars-sized protoplanets. This demonstrates that protoplanets of approximately 10(3) km size accreted within the first 1.5 Myr, as proposed by theory, and that fragments of these bodies survived as asteroids.  相似文献   

3.
The microstructure of Fe-Ni metallic phases in Dong Ujimqin mesosiderite was studied using the field emission SEM. Taenite is characterized by a zoned structure, consisting of outer clear taenite and inner cloudy zone (CZ). CZ has a typical "island-honeycomb" microstructure. The average size of the island phase is about 358 nm, suggesting a cooling rate of ~ 0. 5℃/Ma at low temperature (<400℃ ). The Ni concentration profiles across kamacite and zoned taenite were also measured by electron probe microscope analysis (EPMA). Formation of the Fe-Ni metallic phases, microstructure in Dong Ujimqin mesosiderite was discussed based on the new low-temperature Fe-Ni phase diagram.  相似文献   

4.
应用射频溅射技术制备了面心立方结构的Fe1-xNix/Cu(x=0.26-0.54)金属超晶格,MgO单晶衬底的采用以及在面心立方结构的Cu上实施外延等措施保证了在Ni质量分数低至0.26时Fe-Ni合金层仍保持了良好的面心立方的晶体结构,而且直到液氦温区这种面心立方结构仍是稳定的,磁性测量表明,当Fe-Ni合金层的Ni质量分数低至接近因瓦合金成分(x=0.35)时,其合磁矩呈下降趋势,即表现出偏  相似文献   

5.
Understanding the nature and origin of the asteroid population in Earth's vicinity (near-Earth asteroids, and its subset of potentially hazardous asteroids) is a matter of both scientific interest and practical importance. It is generally expected that the compositions of the asteroids that are most likely to hit Earth should reflect those of the most common meteorites. Here we report that most near-Earth asteroids (including the potentially hazardous subset) have spectral properties quantitatively similar to the class of meteorites known as LL chondrites. The prominent Flora family in the inner part of the asteroid belt shares the same spectral properties, suggesting that it is a dominant source of near-Earth asteroids. The observed similarity of near-Earth asteroids to LL chondrites is, however, surprising, as this meteorite class is relatively rare ( approximately 8 per cent of all meteorite falls). One possible explanation is the role of a size-dependent process, such as the Yarkovsky effect, in transporting material from the main belt.  相似文献   

6.
Beck P  Gillet P  El Goresy A  Mostefaoui S 《Nature》2005,435(7045):1071-1074
The accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (approximately 1 s and 5 km, respectively) than in the martian meteorite (approximately 10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (10(5) to 10(7) years ago) may have originated from the same few square kilometres on Mars.  相似文献   

7.
Spurný P  Oberst J  Heinlein D 《Nature》2003,423(6936):151-153
Photographic observations of meteoroids passing through the atmosphere provide information about the population of interplanetary bodies in the Earth's vicinity in the size range from 0.1 m to several metres. It is extremely rare that any of these meteoroids survives atmospheric entry to be recovered as a meteorite on the ground. Príbram was the first meteorite (an ordinary chondrite) with a photographically determined orbit; it fell on 7 April 1959 (ref. 1). Here we report the fourth meteorite fall to be captured by camera networks. We determined the atmospheric trajectory and pre-atmospheric orbit of the object from the photographic records. One 1.75-kg meteorite--named Neuschwanstein and classified as an enstatite chondrite--was recovered within the predicted impact area. The bolide's heliocentric orbit is exceptional as it is almost identical to the orbit of Príbram, suggesting that we have discovered a 'stream' of meteoritic objects in an Earth-crossing orbit. The chemical classifications and cosmic-ray exposure ages of the two meteorites are quite different, however, which implies a heterogeneous stream.  相似文献   

8.
Heck PR  Schmitz B  Baur H  Halliday AN  Wieler R 《Nature》2004,430(6997):323-325
Very large collisions in the asteroid belt could lead temporarily to a substantial increase in the rate of impacts of meteorites on Earth. Orbital simulations predict that fragments from such events may arrive considerably faster than the typical transit times of meteorites falling today, because in some large impacts part of the debris is transferred directly into a resonant orbit with Jupiter. Such an efficient meteorite delivery track, however, has not been verified. Here we report high-sensitivity measurements of noble gases produced by cosmic rays in chromite grains from a unique suite of fossil meteorites preserved in approximately 480 million year old sediments. The transfer times deduced from the noble gases are as short as approximately 10(5) years, and they increase with stratigraphic height in agreement with the estimated duration of sedimentation. These data provide powerful evidence that this unusual meteorite occurrence was the result of a long-lasting rain of meteorites following the destruction of an asteroid, and show that at least one strong resonance in the main asteroid belt can deliver material into the inner Solar System within the short timescales suggested by dynamical models.  相似文献   

9.
Whether life vestige existed in Martian meteorites or not has provoked a hot tide toward Mars exploration. Among the other things, whether water existed in Marsor not again becomes a hot point of contemporary sci- entific exploration. Analyzing the hydrog…  相似文献   

10.
Krot AN  Yurimoto H  Hutcheon ID  MacPherson GJ 《Nature》2005,434(7036):998-1001
Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules, as well as to the higher abundance of 26Al in CAIs; both observations indicate that CAIs pre-date chondrules by 1-3 million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Delta17O approximately -1 per thousand to -5 per thousand). Spinel and diopside in the CAI cores are 16O-rich (Delta17O up to -20 per thousand), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Delta17O = -8 per thousand to 2 per thousand). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 +/- 1.4) x 10(-6) and <1.2 x 10(-6). We conclude that these CAIs had chondrule material added to them during a re-melting episode approximately 2 Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 x 10(-5).  相似文献   

11.
Re, Os concentrations and Os isotopic compositions of the Dongling ⅢCD iron meteorite were determined by N-TIMS technique. The result was compared with that of the other irons and chondrites. The Re and Os concentrations of the Dongling iron meteorite were plotted on the trends of the group ⅢA and ⅣA irons. The Pt-Os relation of the Dongling iron meteorite is similar to that of the group ⅡA irons. That suggests a higher fractionation for the Dongling iron meteorite.  相似文献   

12.
Twenty-eight meteorites were collected on blue ice in the Grove Mountains region, Antarctica, by the 16th Chinese Antarctic Research Expedition (CHINARE). 26 out of the stones are ordinary chondrites, and their chemical-petrographic types are assigned based on electron probe microanalyses, petrography and mineralogy. 6 of them are unequilibrated L-chondrites, and the other 20 chondrites are equilibrated, including 6 H-group (3 H4, 1 H5 and 2 H6), 9 L-group (3 L4, 1 L5 and 5 L6) and 5 LL-group (2 LL4 and 3 LL5). Detailed comparative study suggests that 10 of them (including other 2 chondrites collected by the 15th CHINARE) could be paired, and represent 5 individual fall events. Hence, all 32 meteorites collected from the Grove Mountains probably belong to 27 fall events, suggestive of meteorite transferring and concentrating processes. The Grove Mountains are likely a new meteorite-enriched region. Distribution patterns of chemical-petrographic type and mass of the Grove Mountains meteorites are significantly distinct from those found in other regions, indicative of their unique sources and/or concentration mechanism. However, more studies are required in order to clarify these differences.  相似文献   

13.
Spherical Nano-scale nickel hydroxide was prepared through precipitaition transmutation method by controlling the transmutation conditions in this paper.The measurement results of XRD and TEM indicate that the crystallization of the nano-Scale nickel hydroxide is β-style and its shape is spherical with a diameter of 40-70 nanometer.The adulteration experiment shows that the adulteration ratio of nono-scale Ni(OH)2 in common spherical micrometer-scale Ni(OH)2 exists a optimal value(1:9) And at this point,the utilization ratio of Ni(OH)2 in electrodes can be raised by 10%,and the nono-Scale nickel hydroxide with sphericity shape shows a better adulteration performance than that with needle shapge.  相似文献   

14.
The delivery of extraterrestrial organic molecules to Earth by meteorites may have been important for the origin and early evolution of life. Indigenous amino acids have been found in meteorites-over 70 in the Murchison meteorite alone. Although it has been generally accepted that the meteoritic amino acids formed in liquid water on a parent body, the water in the Murchison meteorite is depleted in deuterium relative to the indigenous organic acids. Moreover, the meteoritical evidence for an excess of laevo-rotatory amino acids is hard to understand in the context of liquid-water reactions on meteorite parent bodies. Here we report a laboratory demonstration that glycine, alanine and serine naturally form from ultraviolet photolysis of the analogues of icy interstellar grains. Such amino acids would naturally have a deuterium excess similar to that seen in interstellar molecular clouds, and the formation process could also result in enantiomeric excesses if the incident radiation is circularly polarized. These results suggest that at least some meteoritic amino acids are the result of interstellar photochemistry, rather than formation in liquid water on an early Solar System body.  相似文献   

15.
Jedicke R  Nesvorný D  Whiteley R  Ivezić Z Z  Jurić M 《Nature》2004,429(6989):275-277
Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.  相似文献   

16.
Microscopic diamond was recently discovered in oxidized acid residues from several carbonaceous chondrite meteorites (for example, the C delta component of the Allende meteorite). Some of the reported properties of C delta seem in conflict with those expected of diamond. Here we present high spatial resolution analytical data which may help to explain such results. The C delta diamond is an extremely fine-grained (0.5-10 nm) single-phase material, but surface and interfacial carbon atoms, which may comprise as much as 25% of the total, impart an 'amorphous' character to some spectral data. These data support the proposed high-pressure conversion of amorphous carbon and graphite into diamonds due to grain-grain collisions in the interstellar medium although a low-pressure mechanism of formation cannot be ruled out.  相似文献   

17.
Shock EL  Schulte MD 《Nature》1990,343(6260):728-731
It has been suggested that amino acids and other organic compounds found in carbonaceous meteorites formed by aqueous alteration in the meteorite parent bodies. Observations of carbonaceous material in interstellar grains and interplanetary dust particles indicate that condensed organic compounds may have been present in meteorite parent bodies at the time of aqueous alteration. One group of compounds thought to be representative of this carbonaceous material is the polycyclic aromatic hydrocarbons (PAHs). Recently it was proposed that PAHs condense on SiC grains in the molecular envelopes of carbon-rich red-giant stars, which would allow for their subsequent incorporation into meteorite parent bodies during accretion. This incorporation mechanism is supported by the identification of SiC grains in carbonaceous chondrites. The possibility therefore exists that PAHs, and/or other condensed organic compounds, represent the starting material for aqueous alteration which leads to the formation of amino acids and other water-soluble organic compounds. Here we present calculations of the distribution of aqueous organic compounds in metastable equilibrium with representative PAHs as functions of the fugacities of O2, CO2 and NH3. The results reported here for pyrene and fluoranthene, two PAHs with different structures but the same stoichiometry, differ greatly but indicate that the formation of amino and carboxylic acids is energetically favourable at probable parent-body alteration conditions. The actual reaction mechanisms involved could be revealed by consideration of isotope data for PAHs, amino acids, other organic compounds and carbonates in carbonaceous chondrites.  相似文献   

18.
Willbold M  Elliott T  Moorbath S 《Nature》2011,477(7363):195-198
Many precious, 'iron-loving' metals, such as gold, are surprisingly abundant in the accessible parts of the Earth, given the efficiency with which core formation should have removed them to the planet's deep interior. One explanation of their over-abundance is a 'late veneer'--a flux of meteorites added to the Earth after core formation as a 'terminal' bombardment that culminated in the cratering of the Moon. Some 3.8 billion-year-old rocks from Isua, Greenland, are derived from sources that retain an isotopic memory of events pre-dating this cataclysmic meteorite shower. These Isua samples thus provide a window on the composition of the Earth before such a late veneer and allow a direct test of its importance in modifying the composition of the planet. Using high-precision (less than 6 parts per million, 2 standard deviations) tungsten isotope analyses of these rocks, here we show that they have a isotopic tungsten ratio (182)W/(184)W that is significantly higher (about 13 parts per million) than modern terrestrial samples. This finding is in good agreement with the expected influence of a late veneer. We also show that alternative interpretations, such as partial remixing of a deep-mantle reservoir formed in the Hadean eon (more than four billion years ago) or core-mantle interaction, do not explain the W isotope data well. The decrease in mantle (182)W/(184)W occurs during the Archean eon (about four to three billion years ago), potentially on the same timescale as a notable decrease in (142)Nd/(144)Nd (refs 3 and 6). We speculate that both observations can be explained if late meteorite bombardment triggered the onset of the current style of mantle convection.  相似文献   

19.
机械合金化制备Fe—Ni系纳米粉末的马氏体相变   总被引:5,自引:1,他引:4  
采用机械合金化技术制备了Fe-Ni系纳米分末,利用X射线衍射仪分析了不同含Ni量的Fe-Ni粉经不同球磨时间机械合金化后的相组成。研究表明,Ni含量对机械合金化过程中相转变趋势有重要影响,对Ni含量低于30%的Fe-Ni粉末,机械合金化过程中发生了马氏体相变。当Ni含量高于35%,随球磨时间的延长,在球磨初期产生的马氏体会向奥氏体转变,发生逆转变。  相似文献   

20.
Macdougall JD  Lugmair GW  Kerridge JF 《Nature》1984,307(5948):249-251
The CI meteorites are rare but important objects because they may represent our best sample of chemically unfractionated Solar System material. Despite the fact the these meteorites apparently retain their original chemical composition, they clearly contain secondary mineral phases, some at least believed to have been produced through the action of liquid water on the parent body. The timing of this event, however, was unknown. In an attempt to solve this problem, we have measured the Sr isotopic composition and 87Rb/86Sr in carbonates and sulphate separated from the Orgueil meteorite. Both of these phases probably precipitated from aqueous solution. Our first results, reported here, show that carbonate deposition occurred contemporaneously with parent body formation or shortly after it probably within 100 Myr. On the other hand, at least some of the calcium sulphate seems to have been formed recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号