首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.  相似文献   

2.
The central amygdala (CEA), a nucleus predominantly composed of GABAergic inhibitory neurons, is essential for fear conditioning. How the acquisition and expression of conditioned fear are encoded within CEA inhibitory circuits is not understood. Using in vivo electrophysiological, optogenetic and pharmacological approaches in mice, we show that neuronal activity in the lateral subdivision of the central amygdala (CEl) is required for fear acquisition, whereas conditioned fear responses are driven by output neurons in the medial subdivision (CEm). Functional circuit analysis revealed that inhibitory CEA microcircuits are highly organized and that cell-type-specific plasticity of phasic and tonic activity in the CEl to CEm pathway may gate fear expression and regulate fear generalization. Our results define the functional architecture of CEA microcircuits and their role in the acquisition and regulation of conditioned fear behaviour.  相似文献   

3.
A Colino  J V Halliwell 《Nature》1987,328(6125):73-77
The hippocampus receives a dense serotonin-containing innervation from the divisions of the raphe nucleus. Serotonin applied to hippocampal neurons to mimic the action of endogenous transmitter often produces complex and variable responses (see for example ref. 3). Using voltage-clamp methods and new ligands that are selective for subtypes of serotonin receptors, we have been able to clarify the mechanism of serotonin action on CA1 cells in rat hippocampal slices. We describe three distinct actions of serotonin (or 5-HT) on identified K-conductances in these cells. First, it activates a Ca-independent K-current which is responsible for neuronal hyperpolarization and is inhibitory. Second, it simultaneously suppresses the slow Ca-dependent K-conductance that is largely responsible for the accommodation of cell firing in CA1 neurons: this produces a paradoxical increase in neuronal discharge in response to a depolarizing input. Third, serotonin produces a more slowly developing and long-lasting suppression of an intrinsic voltage-dependent K-conductance, Im (ref. 9), leading to neuronal depolarization and excitation. The hyperpolarizing response is mediated by class 1A serotonin receptors, whereas the other responses are not. Modulation of these different conductances by endogenously released serotonin could therefore change the probability or the duration (or both) of neuronal firing in the mammalian brain in different ways to give inhibitory, excitatory or mixed effects.  相似文献   

4.
Aungst JL  Heyward PM  Puche AC  Karnup SV  Hayar A  Szabo G  Shipley MT 《Nature》2003,426(6967):623-629
Centre-surround inhibition--the suppression of activity of neighbouring cells by a central group of neurons--is a fundamental mechanism that increases contrast in patterned sensory processing. The initial stage of neural processing in olfaction occurs in olfactory bulb glomeruli, but evidence for functional interactions between glomeruli is fragmentary. Here we show that the so-called 'short axon' cells, contrary to their name, send interglomerular axons over long distances to form excitatory synapses with inhibitory periglomerular neurons up to 20-30 glomeruli away. Interglomerular excitation of these periglomerular cells potently inhibits mitral cells and forms an on-centre, off-surround circuit. This interglomerular centre-surround inhibitory network, along with the well-established mitral-granule-mitral inhibitory circuit, forms a serial, two-stage inhibitory circuit that could enhance spatiotemporal responses to odours.  相似文献   

5.
Ge S  Goh EL  Sailor KA  Kitabatake Y  Ming GL  Song H 《Nature》2006,439(7076):589-593
Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (gamma-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.  相似文献   

6.
Zhang LI  Tan AY  Schreiner CE  Merzenich MM 《Nature》2003,424(6945):201-205
The direction of frequency-modulated (FM) sweeps is an important temporal cue in animal and human communication. FM direction-selective neurons are found in the primary auditory cortex (A1), but their topography and the mechanisms underlying their selectivity remain largely unknown. Here we report that in the rat A1, direction selectivity is topographically ordered in parallel with characteristic frequency (CF): low CF neurons preferred upward sweeps, whereas high CF neurons preferred downward sweeps. The asymmetry of 'inhibitory sidebands', suppressive regions flanking the tonal receptive field (TRF) of the spike response, also co-varied with CF. In vivo whole-cell recordings showed that the direction selectivity already present in the synaptic inputs was enhanced by cortical synaptic inhibition, which suppressed the synaptic excitation of the non-preferred direction more than that of the preferred. The excitatory and inhibitory synaptic TRFs had identical spectral tuning, but with inhibition delayed relative to excitation. The spectral asymmetry of the synaptic TRFs co-varied with CF, as had direction selectivity and sideband asymmetry, and thus suggested a synaptic mechanism for the shaping of FM direction selectivity and its topographic ordering.  相似文献   

7.
Yonehara K  Balint K  Noda M  Nagel G  Bamberg E  Roska B 《Nature》2011,469(7330):407-410
Spatial asymmetries in neural connectivity have an important role in creating basic building blocks of neuronal processing. A key circuit module of directionally selective (DS) retinal ganglion cells is a spatially asymmetric inhibitory input from starburst amacrine cells. It is not known how and when this circuit asymmetry is established during development. Here we photostimulate mouse starburst cells targeted with channelrhodopsin-2 (refs 6-8) while recording from a single genetically labelled type of DS cell. We follow the spatial distribution of synaptic strengths between starburst and DS cells during early postnatal development before these neurons can respond to a physiological light stimulus, and confirm connectivity by monosynaptically restricted trans-synaptic rabies viral tracing. We show that asymmetry develops rapidly over a 2-day period through an intermediate state in which random or symmetric synaptic connections have been established. The development of asymmetry involves the spatially selective reorganization of inhibitory synaptic inputs. Intriguingly, the spatial distribution of excitatory synaptic inputs from starburst cells is significantly more symmetric than that of the inhibitory inputs at the end of this developmental period. Our work demonstrates a rapid developmental switch from a symmetric to asymmetric input distribution for inhibition in the neural circuit of a principal cell.  相似文献   

8.
R J Douglas  K A Martin  D Whitteridge 《Nature》1988,332(6165):642-644
Theoretical analyses of the electrical behaviour of the highly branched processes of nerve cells has focused attention on the possibility that single cells perform complex logical operations rather than simply summing their synaptic inputs. In particular, it has been suggested that the orientation and direction selectivity of cells in the visual cortex results from the action of a nonlinear 'shunting' inhibition that emulates an AND-NOT logical operation. The characteristic biophysical feature of this proposed inhibitory mechanism is that it evokes a large and relatively sustained increase in the conductance of the neuronal membrane while leaving the membrane potential unaffected. This shunting mechanism contrasts with linear 'summative' inhibition in which conductance changes are less prominent, and inhibition is achieved by hyperpolarization of the membrane potential. In a direct experimental test of the hypothesis that the selectivity of visual cortical neurons depends on shunting inhibition we found no evidence for the large conductance changes predicted by the theory.  相似文献   

9.
Gentner TQ  Margoliash D 《Nature》2003,424(6949):669-674
The neural representations associated with learned auditory behaviours, such as recognizing individuals based on their vocalizations, are not well described. Higher vertebrates learn to recognize complex conspecific vocalizations that comprise sequences of easily identified, naturally occurring auditory objects, which should facilitate the analysis of higher auditory pathways. Here we describe the first example of neurons selective for learned conspecific vocalizations in adult animals--in starlings that have been trained operantly to recognize conspecific songs. The neuronal population is found in a non-primary forebrain auditory region, exhibits increased responses to the set of learned songs compared with novel songs, and shows differential responses to categories of learned songs based on recognition training contingencies. Within the population, many cells respond highly selectively to a subset of specific motifs (acoustic objects) present only in the learned songs. Such neuronal selectivity may contribute to song-recognition behaviour, which in starlings is sensitive to motif identity. In this system, both top-down and bottom-up processes may modify the tuning properties of neurons during recognition learning, giving rise to plastic representations of behaviourally meaningful auditory objects.  相似文献   

10.
Person AL  Raman IM 《Nature》2012,481(7382):502-505
An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, release GABA (γ-aminobutyric acid). Their high intrinsic firing rates (50?Hz) and extensive convergence predict that their target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely. One indication of how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviours. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios (~40:1), fast inhibitory postsynaptic current kinetics (τ(decay) = 2.5?ms) and high intrinsic firing rates (~90?Hz). In vitro, dynamically clamped asynchronous inhibitory postsynaptic potentials mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous inhibitory postsynaptic potentials entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 out of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.  相似文献   

11.
Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to 'OFF' bipolar and 'ON' bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.  相似文献   

12.
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ(+) neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ(-) neurons in CEl. Electrical silencing of PKC-δ(+) neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEl(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.  相似文献   

13.
Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell–signal–receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.  相似文献   

14.
Stoleru D  Peng Y  Nawathean P  Rosbash M 《Nature》2005,438(7065):238-242
The biochemical machinery that underlies circadian rhythms is conserved among animal species and drives self-sustained molecular oscillations and functions, even within individual asynchronous tissue-culture cells. Yet the rhythm-generating neural centres of higher eukaryotes are usually composed of interconnected cellular networks, which contribute to robustness and synchrony as well as other complex features of rhythmic behaviour. In mammals, little is known about how individual brain oscillators are organized to orchestrate a complex behavioural pattern. Drosophila is arguably more advanced from this point of view: we and others have recently shown that a group of adult brain clock neurons expresses the neuropeptide PDF and controls morning activity (small LN(v) cells; M-cells), whereas another group of clock neurons controls evening activity (CRY+, PDF- cells; E-cells). We have generated transgenic mosaic animals with different circadian periods in morning and evening cells. Here we show, by behavioural and molecular assays, that the six canonical groups of clock neurons are organized into two separate neuronal circuits. One has no apparent effect on locomotor rhythmicity in darkness, but within the second circuit the molecular and behavioural timing of the evening cells is determined by morning-cell properties. This is due to a daily resetting signal from the morning to the evening cells, which run at their genetically programmed pace between consecutive signals. This neural circuit and oscillator-coupling mechanism ensures a proper relationship between the timing of morning and evening locomotor activity.  相似文献   

15.
The effects of stimulating locus coeruleus (LC) on neuronal activity of cerebellar fastigial nucleus (FN) was investigated. Stimulation of LC elicited inhibitory, excitatory and biphasic (inhibition-excitation) responses from FN cells. The majority of responsive cells showed an inhibitory response with a latency of less than 10 ms. Injection of α adrenoreceptor antagonists phentolamine (ⅳ) could block the inhibitory response of FN cells to the LC stimulation, but propranolol (ⅳ), a β adrenoreceptor antagonist, could not. These results suggest that LC-cerebellar noradrenergic afferent fibers may be involved in the cerebellar sensorimotor integration process by exerting their modulatory action on the cerebellar nuclear cells' activities.  相似文献   

16.
Mechanisms and circuitry underlying directional selectivity in the retina   总被引:10,自引:0,他引:10  
Fried SI  Münch TA  Werblin FS 《Nature》2002,420(6914):411-414
In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.  相似文献   

17.
Borodinsky LN  Root CM  Cronin JA  Sann SB  Gu X  Spitzer NC 《Nature》2004,429(6991):523-530
Neurotransmitters are essential for interneuronal signalling, and the specification of appropriate transmitters in differentiating neurons has been related to intrinsic neuronal identity and to extrinsic signalling proteins. Here we show that altering the distinct patterns of Ca2+ spike activity spontaneously generated by different classes of embryonic spinal neurons in vivo changes the transmitter that neurons express without affecting the expression of markers of cell identity. Regulation seems to be homeostatic: suppression of activity leads to an increased number of neurons expressing excitatory transmitters and a decreased number of neurons expressing inhibitory transmitters; the reverse occurs when activity is enhanced. The imposition of specific spike frequencies in vitro does not affect labels of cell identity but again specifies the expression of transmitters that are inappropriate for the markers they express, during an early critical period. The results identify a new role of patterned activity in development of the central nervous system.  相似文献   

18.
Briggman KL  Helmstaedter M  Denk W 《Nature》2011,471(7337):183-188
The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell's preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy.  相似文献   

19.
Brain-derived neurotrophic factor prevents neuronal death in vivo   总被引:32,自引:0,他引:32  
M M Hofer  Y A Barde 《Nature》1988,331(6153):261-262
Developing vertebrate neurons are thought to depend for their survival on specific neurotrophic proteins present in their target fields. The limited availability of these proteins does not allow the survival of all neurons initially innervating a target, resulting in the widely observed phenomenon of naturally occurring neuronal death. Although a variety of proteins have been reported to promote the survival of neurons in tissue culture, the demonstration that these proteins increase neuronal numbers and/or decrease neuronal death in vivo has only been possible with nerve growth factor (NGF). The generalization of the concept that neurotrophic proteins regulate neuronal survival during normal development critically depends on the demonstration that the survival of neurons in vivo can be increased by the administration of a neurotrophic protein different from NGF. We report here that this is the case with brain-derived neurotrophic factor, a protein of extremely low abundance purified from the central nervous system.  相似文献   

20.
Neurons derived from radial glial cells establish radial units in neocortex   总被引:70,自引:0,他引:70  
The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active throughout neurogenesis, and disappear or become astrocytes when neuronal migration is complete. Although the lineage relationships of cortical neurons and glia have been explored, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1-3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号