首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 99 毫秒
1.
在生成元g关于y连续、单调、一般增长,且关于z一致连续的条件下,用单调取极限的方法提出并证明了此类倒向随机微分方程解的Levi定理、Fatou定理、Lebesgue定理,推广了经典概率理论中的相应结论.  相似文献   

2.
证明了一类生成元满足广义左Lipschitz条件的倒向随机微分方程解的存在性.通过单调迭代方法构造了一列单调的解序列,然后证明其极限存在,并为原方程的解.并值得一提的是,这里的生成元g既可以关于变量y不连续,同时g关于变量y和z的变换范围也可以与时间参数t有关.  相似文献   

3.
王赢 《科技信息》2014,(1):2+26
考虑一族含参数的倒向随机微分方程,在系数满足在一类非Lipschitz条件下证明了解的稳定性。  相似文献   

4.
考虑了一类具有随机Lipschitz系数的反射倒向随机微分方程。利用Snell包络证明了特殊形式下方程解的存在惟一性,利用不动点定理得到了一般形式下方程解的存在惟一性。  相似文献   

5.
一类倒向随机微分方程的比较定理   总被引:1,自引:0,他引:1  
倒向随机微分方程(BSDE)的比较定理是BSDE理论的基本定理,本文在漂移系数满足一类非Lipschitz条件下利用停时证明了倒向随机微分方程的比较定理,结果可以得到广泛的应用。  相似文献   

6.
在适当的假设条件下建立了双障碍反射型倒向随机微分方程的生成元的表示定理,利用此表示定理,给出了关于双障碍反射型倒向随机微分方程生成元的逆比较定理。  相似文献   

7.
考虑倒向随机微分方程关于解Z的比较问题. 讨论了关于Z比较定理的结果.  相似文献   

8.
讨论了一类漂移系数f(s,.,.)关于(y,z)不满足Lipschitz条件的倒向随机微分方程解的存在唯一性,利用Jensen不等式、Gronwall不等式以及常微分方程的比较定理给出并证明了此类倒向随机微分方程的比较定理.  相似文献   

9.
非Lipschitz条件下倒向随机微分方程解的稳定性   总被引:1,自引:0,他引:1  
证明了倒向随机微分方程列y^εt=ξ^ε+∫^T t f^ε(s,y^ε s,z^ε s)ds-∫^T t[g^ε(s,y^εs)+z^ε s]dws,ε≥0,t∈[0,T]在非Lipschitz条件下其解的稳定性;使用的主要工具是Bihari不等式的一个推论.  相似文献   

10.
王赢等人给出了一类非Lipschitz条件下倒向随机微分方程的适应解.本文建立了其解的比较定理,并获得了非线性期望的一些性质.  相似文献   

11.
为研究倒向随机微分方程第二部分解的比较性质,利用倒向随机微分方程解的Malli-avin微分,第二部分解可化为一个线性倒向随机微分方程的第一部分解,再结合经典的比较定理,给出第二部分解的比较定理成立的一个充分条件。通过该比较定理,可以把第二部分解控制在一个确定的闭区间,并由此指出一类可以退化为常微分方程的倒向随机微分方程。  相似文献   

12.
在适当的假设条件下,建立了系数连续且满足线性增长条件的反射倒向随机微分方程( reflected backward stochastic differential equations, RBSDEs)的局部表示定理,利用此表示定理,建立了此类RBSDEs的局部逆比较定理。  相似文献   

13.
证明了一维M arkov调制的随机微分方程解的比较定理。  相似文献   

14.
首先在比倒向随机微分方程更一般的倒向重随机微分方程中获得了一个新的比较定理。然后,受倒向随机微分方程共单调定律的启发,并利用获得的新的比较定理,首次得到了倒向重随机微分方程解z的共单调定理;其结果推广了许多已有的结果。  相似文献   

15.
利用两种方法证明由高维正倒向随机微分方程系统的解,给出一类拟线性抛物型偏微分方程系统惟一粘性解。  相似文献   

16.
利用倒向重随机微分方程解的比较定理和函数逼近方法讨论了一类具有一致连续系数的1维倒向重随机微分方程,得到了此类方程解的存在定理,推广了系数满足Lipschitz条件的情形.  相似文献   

17.
无穷水平倒向随机微分方程解的比较定理   总被引:1,自引:0,他引:1  
运用鞅方法,建立了无穷水平倒向随机微分方程的比较定理,简略讨论了无穷水平随机微分效用的性质,推广了Peng-Pardoux和Peng-Karoui相关结果。  相似文献   

18.
主要证明了漂移系数关于变量y不连续和变量z利普希茨的带有两个反射壁的倒向随机微分方程的解的存在性定理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号