首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Shaye DD  Greenwald I 《Nature》2002,420(6916):686-690
The coordination of signals from different pathways is important for cell fate specification during animal development. Here, we define a novel mode of crosstalk between the epidermal growth factor receptor/Ras/mitogen-activated protein kinase cascade and the LIN-12/Notch pathway during Caenorhabditis elegans vulval development. Six vulval precursor cells (VPCs) are initially equivalent but adopt different fates as a result of an inductive signal mediated by the Ras pathway and a lateral signal mediated by the LIN-12/Notch pathway. One consequence of activating Ras is a reduction of LIN-12 protein in P6.p (ref. 2), the VPC believed to be the source of the lateral signal. Here we identify a 'downregulation targeting signal' (DTS) in the LIN-12 intracellular domain, which encompasses a di-leucine-containing endocytic sorting motif. The DTS seems to be required for internalization of LIN-12, and on Ras activation it might mediate altered endocytic routing of LIN-12, leading to downregulation. We also show that if LIN-12 is stabilized in P6.p, lateral signalling is compromised, indicating that LIN-12 downregulation is important in the appropriate specification of cell fates in vivo.  相似文献   

3.
Huppert SS  Le A  Schroeter EH  Mumm JS  Saxena MT  Milner LA  Kopan R 《Nature》2000,405(6789):966-970
  相似文献   

4.
Signalling through the receptor protein Notch, which is involved in crucial cell-fate decisions during development, requires ligand-induced cleavage of Notch. This cleavage occurs within the predicted transmembrane domain, releasing the Notch intracellular domain (NICD), and is reminiscent of gamma-secretase-mediated cleavage of beta-amyloid precursor protein (APP), a critical event in the pathogenesis of Alzheimer's disease. A deficiency in presenilin-1 (PS1) inhibits processing of APP by gamma-secretase in mammalian cells, and genetic interactions between Notch and PS1 homologues in Caenorhabditis elegans indicate that the presenilins may modulate the Notch signalling pathway. Here we report that, in mammalian cells, PS1 deficiency also reduces the proteolytic release of NICD from a truncated Notch construct, thus identifying the specific biochemical step of the Notch signalling pathway that is affected by PS1. Moreover, several gamma-secretase inhibitors block this same step in Notch processing, indicating that related protease activities are responsible for cleavage within the predicted transmembrane domains of Notch and APP. Thus the targeting of gamma-secretase for the treatment of Alzheimer's disease may risk toxicity caused by reduced Notch signalling.  相似文献   

5.
6.
J C Walker  R Zhang 《Nature》1990,345(6277):743-746
The protein kinase family of enzymes mediates the responses of eukaryotic cells to both inter- and intracellular signals. These enzymes are either serine/threonine-specific or tyrosine-specific. Many of the latter are transmembrane receptors and are important in transduction of extracellular signals across the plasma membrane, whereas few examples of receptor serine kinases have been reported. We have now identified a complementary DNA clone from Zea mays (L.) encoding a putative serine/threonine-specific protein kinase structurally related to the receptor tyrosine kinases. This structural similarity is evidence for a previously undescribed class of transmembrane receptor in higher plants likely to be involved in signal reception and transduction. Furthermore, the catalytic domain of this protein kinase is linked through a transmembrane domain to an extracellular domain similar to that of glycoproteins encoded in the self-incompatibility locus of Brassica which are involved in the self-recognition system between pollen and stigma.  相似文献   

7.
Ye Y  Lukinova N  Fortini ME 《Nature》1999,398(6727):525-529
Presenilin proteins have been implicated both in developmental signalling by the cell-surface protein Notch and in the pathogenesis of Alzheimer's disease. Loss of presenilin function leads to Notch/lin-12-like mutant phenotypes in Caenorhabditis elegans and to reduced Notch1 expression in the mouse paraxial mesoderm. In humans, presenilins that are associated with Alzheimer's disease stimulate overproduction of the neurotoxic 42-amino-acid beta-amyloid derivative (Abeta42) of the amyloid-precursor protein APP. Here we describe loss-of-function mutations in the Drosophila Presenilin gene that cause lethal Notch-like phenotypes such as maternal neurogenic effects during embryogenesis, loss of lateral inhibition within proneural cell clusters, and absence of wing margin formation. We show that presenilin is required for the normal proteolytic production of carboxy-terminal Notch fragments that are needed for receptor maturation and signalling, and that genetically it acts upstream of both the membrane-bound form and the activated nuclear form of Notch. Our findings provide evidence for the existence of distinct processing sites or modifications in the extracellular domain of Notch. They also link the role of presenilin in Notch signalling to its effect on amyloid production in Alzheimer's disease.  相似文献   

8.
G0 is a major growth cone protein subject to regulation by GAP-43   总被引:18,自引:0,他引:18  
G0, a GTP-binding protein that transduces information from transmembrane receptors, has been found to be a major component of the neuronal growth cone membrane. GAP-43, an intracellular growth cone protein closely associated with neuronal growth, stimulates GTP-gamma-S binding to G0. It does so through an amino-terminal domain homologous to G-linked transmembrane receptors. Thus, G0 in the growth cone may be regulated by intracellular as well as extracellular signals.  相似文献   

9.
GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides   总被引:33,自引:0,他引:33  
Phiel CJ  Wilson CA  Lee VM  Klein PS 《Nature》2003,423(6938):435-439
Alzheimer's disease is associated with increased production and aggregation of amyloid-beta (Abeta) peptides. Abeta peptides are derived from the amyloid precursor protein (APP) by sequential proteolysis, catalysed by the aspartyl protease BACE, followed by presenilin-dependent gamma-secretase cleavage. Presenilin interacts with nicastrin, APH-1 and PEN-2 (ref. 6), all of which are required for gamma-secretase function. Presenilins also interact with alpha-catenin, beta-catenin and glycogen synthase kinase-3beta (GSK-3beta), but a functional role for these proteins in gamma-secretase activity has not been established. Here we show that therapeutic concentrations of lithium, a GSK-3 inhibitor, block the production of Abeta peptides by interfering with APP cleavage at the gamma-secretase step, but do not inhibit Notch processing. Importantly, lithium also blocks the accumulation of Abeta peptides in the brains of mice that overproduce APP. The target of lithium in this setting is GSK-3alpha, which is required for maximal processing of APP. Since GSK-3 also phosphorylates tau protein, the principal component of neurofibrillary tangles, inhibition of GSK-3alpha offers a new approach to reduce the formation of both amyloid plaques and neurofibrillary tangles, two pathological hallmarks of Alzheimer's disease.  相似文献   

10.
Murata Y  Iwasaki H  Sasaki M  Inaba K  Okamura Y 《Nature》2005,435(7046):1239-1243
Changes in membrane potential affect ion channels and transporters, which then alter intracellular chemical conditions. Other signalling pathways coupled to membrane potential have been suggested but their underlying mechanisms are unknown. Here we describe a novel protein from the ascidian Ciona intestinalis that has a transmembrane voltage-sensing domain homologous to the S1-S4 segments of voltage-gated channels and a cytoplasmic domain similar to phosphatase and tensin homologue. This protein, named C. intestinalis voltage-sensor-containing phosphatase (Ci-VSP), displays channel-like 'gating' currents and directly translates changes in membrane potential into the turnover of phosphoinositides. The activity of the phosphoinositide phosphatase in Ci-VSP is tuned within a physiological range of membrane potential. Immunocytochemical studies show that Ci-VSP is expressed in Ciona sperm tail membranes, indicating a possible role in sperm function or morphology. Our data demonstrate that voltage sensing can function beyond channel proteins and thus more ubiquitously than previously realized.  相似文献   

11.
Cooper MT  Bray SJ 《Nature》1999,397(6719):526-530
The Drosophila eye, a paradigm for epithelial organization, is highly polarized with mirror-image symmetry about the equator. The R3 and R4 photoreceptors in each ommatidium are vital in this polarity; they adopt asymmetrical positions in adult ommatidia and are the site of action for several essential genes. Two such genes are frizzled (fz) and dishevelled (dsh), the products of which are components of a signalling pathway required in R3, and which are thought to be activated by a diffusible signal. Here we show that the transmembrane receptor Notch is required downstream of dsh in R3/R4 for them to adopt distinct fates. By using an enhancer for the Notch target gene Enhancer of split mdelta, we show that Notch becomes activated specifically in R4. We propose that Fz/Dsh promotes activity of the Notch ligand Delta and inhibits Notch receptor activity in R3, creating a difference in Notch signalling capacity between R3 and R4. Subsequent feedback in the Notch pathway ensures that this difference becomes amplified. This interplay between Fz/Dsh and Notch indicates that polarity is established through local comparisons between two cells and explains how a signal from one position (for example, the equator in the eye) could be interpreted by all ommatidia in the field.  相似文献   

12.
Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of beta-amyloid precursor protein (betaAPP), and modulates the production of the amyloid beta-peptide (A beta) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase A beta42 and A beta40 peptide secretion. Deletions in this domain inhibit A beta production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and betaAPP.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane Cl- channel regulated by cyclic AMP-dependent phosphorylation and by intracellular ATP. Mutations in CFTR cause cystic fibrosis partly through loss of cAMP-regulated Cl- permeability from the plasma membrane of affected epithelia. The most common mutation in cystic fibrosis is deletion of phenylalanine at residue 508 (CFTR delta F508) (ref. 10). Studies on the biosynthesis and localization of CFTR delta F508 indicate that the mutant protein is not processed correctly and, as a result, is not delivered to the plasma membrane. These conclusions are consistent with earlier functional studies which failed to detect cAMP-stimulated Cl- channels in cells expressing CFTR delta F508 (refs 16, 17). Chloride channel activity was detected, however, when CFTR delta F508 was expressed in Xenopus oocytes, Vero cells and Sf9 insect cells. Because oocytes and Sf9 cells are typically maintained at lower temperatures than mammalian cells, and because processing of nascent proteins can be sensitive to temperature, we tested the effect of temperature on the processing of CFTR delta F508. Here we show that the processing of CFTR delta F508 reverts towards that of wild-type as the incubation temperature is reduced. When the processing defect is corrected, cAMP-regulated Cl- channels appear in the plasma membrane. These results reconcile previous contradictory observations and suggest that the mutant most commonly associated with cystic fibrosis is temperature-sensitive.  相似文献   

14.
Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.  相似文献   

15.
Functioning and processing of membrane proteins critically depend on the way their transmembrane segments are embedded in the membrane. Sphingolipids are structural components of membranes and can also act as intracellular second messengers. Not much is known of sphingolipids binding to transmembrane domains (TMDs) of proteins within the hydrophobic bilayer, and how this could affect protein function. Here we show a direct and highly specific interaction of exclusively one sphingomyelin species, SM 18, with the TMD of the COPI machinery protein p24 (ref. 2). Strikingly, the interaction depends on both the headgroup and the backbone of the sphingolipid, and on a signature sequence (VXXTLXXIY) within the TMD. Molecular dynamics simulations show a close interaction of SM 18 with the TMD. We suggest a role of SM 18 in regulating the equilibrium between an inactive monomeric and an active oligomeric state of the p24 protein, which in turn regulates COPI-dependent transport. Bioinformatic analyses predict that the signature sequence represents a conserved sphingolipid-binding cavity in a variety of mammalian membrane proteins. Thus, in addition to a function as second messengers, sphingolipids can act as cofactors to regulate the function of transmembrane proteins. Our discovery of an unprecedented specificity of interaction of a TMD with an individual sphingolipid species adds to our understanding of why biological membranes are assembled from such a large variety of different lipids.  相似文献   

16.
The magnesium ion, Mg2+, is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg2+ uptake system of most prokaryotes and a functional homologue of the eukaryotic mitochondrial magnesium transporter. Here we determine crystal structures of the full-length Thermotoga maritima CorA in an apparent closed state and its isolated cytoplasmic domain at 3.9 A and 1.85 A resolution, respectively. The transporter is a funnel-shaped homopentamer with two transmembrane helices per monomer. The channel is formed by an inner group of five helices and putatively gated by bulky hydrophobic residues. The large cytoplasmic domain forms a funnel whose wide mouth points into the cell and whose walls are formed by five long helices that are extensions of the transmembrane helices. The cytoplasmic neck of the pore is surrounded, on the outside of the funnel, by a ring of highly conserved positively charged residues. Two negatively charged helices in the cytoplasmic domain extend back towards the membrane on the outside of the funnel and abut the ring of positive charge. An apparent Mg2+ ion was bound between monomers at a conserved site in the cytoplasmic domain, suggesting a mechanism to link gating of the pore to the intracellular concentration of Mg2+.  相似文献   

17.
Wang Y  Zhang Y  Ha Y 《Nature》2006,444(7116):179-180
Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and gamma-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 A resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.  相似文献   

18.
JR James  RD Vale 《Nature》2012,487(7405):64-69
A T-cell-mediated immune response is initiated by the T-cell receptor (TCR) interacting with peptide-bound major histocompatibility complex (pMHC) on an infected cell. The mechanism by which this interaction triggers intracellular phosphorylation of the TCR, which lacks a kinase domain, remains poorly understood. Here, we have introduced the TCR and associated signalling molecules into a non-immune cell and reconstituted ligand-specific signalling when these cells are conjugated with antigen-presenting cells. We show that signalling requires the differential segregation of a phosphatase and kinase in the plasma membrane. An artificial, chemically controlled receptor system generates the same effect as TCR–pMHC, demonstrating that the binding energy of an extracellular protein–protein interaction can drive the spatial segregation of membrane proteins without a transmembrane conformational change. This general mechanism may extend to other receptors that rely on extrinsic kinases, including, as we demonstrate, chimaeric antigen receptors being developed for cancer immunotherapy.  相似文献   

19.
Lau WC  Rubinstein JL 《Nature》2012,481(7380):214-218
Ion-translocating rotary ATPases serve either as ATP synthases, using energy from a transmembrane ion motive force to create the cell's supply of ATP, or as transmembrane ion pumps that are powered by ATP hydrolysis. The members of this family of enzymes each contain two rotary motors: one that couples ion translocation to rotation and one that couples rotation to ATP synthesis or hydrolysis. During ATP synthesis, ion translocation through the membrane-bound region of the complex causes rotation of a central rotor that drives conformational changes and ATP synthesis in the catalytic region of the complex. There are no structural models available for the intact membrane region of any ion-translocating rotary ATPase. Here we present a 9.7?? resolution map of the H(+)-driven ATP synthase from Thermus thermophilus obtained by electron cryomicroscopy of single particles in ice. The 600-kilodalton complex has an overall subunit composition of A(3)B(3)CDE(2)FG(2)IL(12). The membrane-bound motor consists of a ring of L subunits and the carboxy-terminal region of subunit I, which are equivalent to the c and a subunits of most other rotary ATPases, respectively. The map shows that the ring contains 12 L subunits and that the I subunit has eight transmembrane helices. The L(12) ring and I subunit have a surprisingly small contact area in the middle of the membrane, with helices from the I subunit making contacts with two different L subunits. The transmembrane helices of subunit I form bundles that could serve as half-channels across the membrane, with the first half-channel conducting protons from the periplasm to the L(12) ring and the second half-channel conducting protons from the L(12) ring to the cytoplasm. This structure therefore suggests the mechanism by which a transmembrane proton motive force is converted to rotation in rotary ATPases.  相似文献   

20.
通过在线生物软件分析梅花鹿四种抗病毒蛋白A3Z2、BST-2A、BST-2B和SAMHD1蛋白的生物信息学特性。从转录组中获得四种蛋白的基因序列,应用Prot Param、Protscale、SOPMA、TMHMM、Target P、Signal P、Motif Scan、Interproscan以及BLAST等在线软件分析蛋白的理化性质、二级结构、穿膜域、结构域等等。首次获得了四种抗病毒因子的基因和蛋白序列,梅花鹿A3Z2基因编码393个氨基酸,相对分子质量为47.59 k Da,碱性,不稳定性亲水蛋白,无信号肽和跨膜结构域,胞内定位,具有糖基化和磷酸化位点,两个胞嘧啶脱氨酶结构域。梅花鹿BST-2A和2B基因编码159个氨基酸,相对分子质量为17.69 k Da和18.12 k Da,酸性,不稳定性亲水蛋白,无信号肽,BST-2A有两个跨膜结构域,BST-2B有一个跨膜结构域,膜定位,具有糖基化和磷酸化位点。梅花鹿SAMHD1基因编码613个氨基酸,相对分子质量为70.51 k Da,碱性,不稳定性亲水蛋白,无信号肽和跨膜结构域,胞内定位,具有磷酸化位点,d NTP磷酸水解酶活性结构域。梅花鹿A3Z2、BST-2A、BST-2B和SAMHD1蛋白具有潜在的抗病毒能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号