首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于激光散射法的大气可吸入颗粒物检测与预警系统,该系统可用于PM2.5以下超细颗粒物的检测,能精确监测到PM10、PM2.5和PM1.0颗粒的具体数值.同时,由于系统中引入了可调谐激光技术,使其抗温湿度干扰能力得到有效提高.该系统具有实时预警功能,当环境中颗粒物浓度超标时,系统通过GPRS模块将报警信息发送给环境监测人员,使监测人员可以实时了解环境状况,并对突发颗粒物污染做出及时应对.  相似文献   

2.
道路绿化林对空气颗粒物浓度的影响   总被引:1,自引:0,他引:1  
以郑州市新107国道为例,对绿化林带两侧空气中颗粒物的浓度进行了观测.主要测定了TSP,PM10,PM25,PM14种粒径的颗粒物浓度.结果表现为:4种粒径的空气颗粒物浓度从8:00-18:00的日变化趋势呈倾斜的“L”形,呈上午高,下午低的走势;绿化林带能净化空气中的颗粒物,对鸭P和PM10的净化效果比PM25,PM1的效果好;颗粒物浓度跟车流量呈正相关,跟风速呈负相关.  相似文献   

3.
采用一组新型便携式检测设备 (光电带电和激光散射 ) ,对两个炼焦厂工人的工作环境和生活环境中大气中亚微米颗粒物携带的多环芳烃 (PPAHs)及可吸入颗粒物 (PM1 0 )的质量浓度进行了实时监测。初步结果表明 :两炼焦厂的气悬颗粒物污染都很严重 ,PM1 0 厂内比家中高 ,但PPAHs厂内与家中在一个数量级上 ;厂内污染主要来源是点火 ,漏烟和小型柴油车尾气 ;焦炉炉型的不同对环境也有明显的影响 ;家庭污染主要来源是燃煤和抽烟 ;人体日均吸入量相当吸烟 6~ 1 0支 ,潜在健康危害巨大  相似文献   

4.
多环芳烃及可吸人颗粒物的实时测量与分析   总被引:4,自引:0,他引:4  
采用一组新型便携式检测设备(光电带电和激光散射),对两个炼焦厂工人的工作环境和生活环境中大气中亚微米颗粒物携带的多环芳烃(PPAHs)及可吸入颗粒物(PM10)的质量浓度进行了实时监测。初步结果表明:两炼焦厂的气悬颗粒物污染都很严重,PM10厂内比家中高,但PPAHs厂内与家中在一个数量级上;厂内污染主要来源是点火,漏烟和小型柴油车尾气;焦炉炉型的不同对环境也有明显的影响;家庭污染主要来源是燃煤和抽烟;人体日均吸入量相当吸烟6~10支,潜在健康危害巨大。  相似文献   

5.
王茜  王月容  古琳 《科学技术与工程》2022,22(17):6927-6936
本文通过对北京市奥森公园侧柏林内外,一年四季4种粒径空气颗粒物浓度全天24h监测、并同步观测空气温湿度、风速、光照等气象因子,分析了林内外不同粒径颗粒物浓度的四季变化、日变化和小粒径颗粒物所占比例日变化规律,并对各粒径颗粒物与小气候因子之间的相关性和显著性进行分析,结果表明:1)侧柏林内外空气颗粒物浓度虽然在不同季节表现出不同的变化规律,但总体来说,林缘的均值高于林内均值,且夜间浓度高于白天,且四季均在5:00-7:00时间段不同程度达到峰值;2)从不同粒径颗粒物浓度的四季变化来看,林内TSP、PM10和PM2.5浓度的高低排序为:冬季>秋季>夏季>春季,PM1.0颗粒物浓度的排序为:冬季>夏季>秋季>春季;林缘TSP、PM10和 PM1.0浓度的高低排序与林内一致,而PM2.5浓度的高低排序为:冬季>夏季>秋季>春季;3)林内外小粒径颗粒物所占比例的四季变化:与颗粒物浓度的季节变化相似均是冬季最大,夏季次之,秋季、春季最小;4)在一定范围内,林内外空气颗粒物浓度与相对湿度、光照均呈正相关,温度和风速呈负相关,且林缘的颗粒物浓度与风速呈显著负相关,随着粒径的减小,相关性变大。说明侧柏林内较林缘相比有较好的滞尘效果,适合保健型园林的开发和建设。  相似文献   

6.
对太原市小店区不同粒径的大气颗粒物(PM2.5,PM5,PM10,TSP)进行采集,并对其浓度变化特征进行详细分析,探讨了特殊天气对大气颗粒物浓度的影响.结果表明:在采样期间,不同粒径颗粒物的年平均浓度均超过了国家规定的二级标准,PM2.5,PM5,PM10,TSP随月份、季节的变化趋势基本一致,均为冬季最高,夏季最低.特殊气象条件对颗粒物的浓度影响较大.  相似文献   

7.
颗粒物污染已成为我国的首要大气污染物,颗粒物污染的来源复杂、危害较大,简要介绍了目前国内外颗粒物监测方法和仪器设备的研究情况,以及所研制的、基于滤膜称重法的、可同时测量PM10和PM2.5的DJ3-1型六工位自循环式大气颗粒物浓度自动监测仪。利用具有无限远光学系统的微分干涉相衬显微技术对该系统所采集到的颗粒物进行了显微观察,得到粗颗粒和细颗粒的粒径分布,与Andersen公司240型双通道采样器的切割性能十分接近。与国内外部分监测仪器进行了同步的颗粒物质量浓度监测的比对测试,结果表明其性能已基本达到国外同类监测仪器的水平。  相似文献   

8.
使用三套新型便携式气悬颗粒物监测仪,对某焦化厂热回收机焦炉的可吸入颗粒物(PM10)、颗粒物上附着的多环芳烃(PPAHs)和颗粒物活化表面积(AS)的浓度进行了为期5 d的实时监测。初步结果表明,该焦炉的颗粒物排放相当低,PM10平均浓度远低于国家常规机焦炉颗粒污染物排放标准;PPAHs和AS的浓度值也很低,其大气颗粒物污染程度大大低于其他形式的炼焦技术;但在5 min的推焦和装煤过程中,浓度急剧升高,值得进一步改进。  相似文献   

9.
本文利用Thermo-Andersen 1ACFM非生物环境微粒大小分级采样器在兰州市发生沙尘天气和非沙尘天气期间采集大气环境中粒径范围分别为9.0-10μm,5.8-9.0μm,4.7-5.8μm,3.3-4.7μm,2.1-3.3μm,1.1-2.1μm,0.65-1.1μm,0.43-0.65μm和0.43μm的颗粒物进行监测分析,结果表明非沙尘天气下兰州市PM10的质量浓度主要集中在可吸入粗颗粒物(粒径2.5-10μm范围)内。沙尘天气下,PM10中的不同粒径的颗粒物随着环境空气中颗粒物浓度的升高,均相应增加;浓度峰值不只出现在粒径范围5.8-10μm颗粒物内,粒径范围1.1-3.3μm颗粒物都会出现浓度峰值。  相似文献   

10.
于2007-11-2008-10对长沙市郊区环境空气中的颗粒物PM10的质量浓度采用TEOM 1400a进行实时监测,以揭示城市颗粒物污染的主要特征及其变化趋势.研究结果表明:长沙市郊区颗粒物污染相当严重,PM10年平均质量浓度为(120.8±47.7) μg/m3,明显超出我国环境空气质量标准,其中秋、冬季节质量浓度高于夏季质量浓度;PM10质量浓度日变化受城市交通密度的影响显著,峰值分别出现于9:00与18:00附近,与早晚交通高峰期吻合;PM10质量浓度在工作日与周末存在明显差异,夏季周末质量浓度明显高于工作日质量浓度,而冬季则相反;颗粒物PM10与PM2.5质量浓度具有很好的相关性,说明我国现行采用的PM10环境空气质量标准评价城市空气质量仍是合适的.  相似文献   

11.
为了研究城市不同交通方式通勤者颗粒物暴露水平、颗粒物浓度影响因素以及不同粒径粒子数量浓度分布,利用便携式Grimm11-A粉尘监测仪在2019年1月对高峰期和非高峰期4个时段的交通微环境颗粒物浓度及粒子粒径分布数据进行64次采样。结果表明,自行车通勤者PM暴露剂量最大(PM10、PM2.5和PM1.0分别为2285.6、1312.7以及1035.5 min·μg·m-3),其余依次是出租车、公交车,地铁暴露剂量最小;四种通勤方式中,PM10和PM2.5暴露浓度与空气质量监测数据之间具有强正相关性,其中,数量浓度与相对湿度的相关系数均大于0.82;粒子数浓度主要分布在0.25~0.7 μm之间 (>99%),粒径小于2.5 μm粒子数累计贡献率达99.9%。研究结果有助于通勤者选择低暴露通勤路线。  相似文献   

12.
大气环境中可吸入颗粒物(PM2.5)的实时监测是评价大气颗粒物的重要指标之一.基于物联网技术开发了PM2.5浓度检测系统.采用光散射法的PM2.5传感器获得大气环境中的PM2.5浓度值.传感器通过WiFi无线技术与网络路由器(WiFi热点)连接,网络路由器通过3G/4G移动网络与远程嵌入式ARM-Linux服务器连接.服务器基于C/S(客户端/服务器)模式实现了计算机与移动设备实时数据的查询.实验结果表明,该系统具有巡检时间短(20s)、自组织、多节点、灵敏度高等优点.  相似文献   

13.
燃煤锅炉烟尘颗粒物中PM_(2.5)排放规律研究   总被引:1,自引:0,他引:1  
为澄清发电厂和工业锅炉联合除尘设备的烟尘排放特征,特别是PM2.5排放规律,选取太原市6台不同类型、容量和除尘方式的燃煤锅炉,采用激光粒度分析仪对采集的烟尘(颗粒物)进行粒径测定,讨论分析PM2.5的排放规律。结果表明,除尘设施前后颗粒物分布规律不同,除尘器前PM2.5呈单峰分布,最大峰值为60~70μm;除尘器后PM2.5呈多峰分布,最大峰值为12~17μm;除尘设施对粒径较大颗粒物的去除率明显高于细颗粒物,对细小颗粒物的除尘效率随锅炉容量的增大而增大;电袋复合除尘器对PM2.5去除率最高,其次为布袋除尘器、静电除尘器;太原市燃煤锅炉PM2.5排放因子范围为0.06~0.52kg/t,锅炉负荷越大,除尘率越高,PM2.5排放因子越小。研究结果可为山西省煤烟尘污染控制提供重要的数据支撑,为获知影响燃煤锅炉烟尘颗粒物中PM2.5排放的因素及采取相应技术提供了理论依据。  相似文献   

14.
微量振荡天平法确定激光粉尘仪大气颗粒物转换系数   总被引:1,自引:0,他引:1  
本研究确定了某激光粉尘仪测试上海市环境大气颗粒物(PM10和PM2.5)的质量浓度转换系数K值。利用激光粉尘仪和TEOM RP 1400a型监测仪,同时对选定的环境监测站同一监测点的环境大气颗粒物(PM10和PM2.5)进行了测定,得出了该激光粉尘仪测试上海市环境大气颗粒物(PM10和PM2.5)的质量浓度转换系数K值呈基本正态分布,分别为0.00594和0.00158。  相似文献   

15.
大气环境中以PM2.5污染问题最为突出。由于无线传威网络的迅速发展为大气环境的实时监测提供了便利条件,于是提出对PM2.5污染状况进行监测。首先,以大气光谱吸收原理为基础,将谐波检测技术与双光路差分法结合后对气体中的PM2.5颗粒浓度物进行检测。由于气体中颗粒物对光谱吸收受波长影响,通过利用激光器的调频特性对发射光源进行调整,获取的输出光信号与调制频率相关,从而得到谐波分量信号中的大气PM2.5颗粒物浓度。其次,运用无线传感网的网络路由器将信号传输到监测终端,并利用人工鱼群理论对目标区域的网络覆盖率、未休眠节点及系统能耗等进行优化,达到有效采集PM2.5浓度信号以完成污染状况监测的目的。实验证明通过对大气环境PM2.5污染状况的有效监测为雾霾治理提供了数据支持。  相似文献   

16.
王晨波 《科技信息》2013,(17):458-459
利用粒径谱仪对正常天气、雾霾天气、烟花燃放和混合污染等四种大气状态下颗粒物进行连续监测,结果表明,雾霾天气下颗粒物数浓度高,粒径大,高数浓度持续时间长;正常天气下颗粒物数浓度低,粒径小,高数浓度持续时间短;烟花集中燃放条件下,颗粒物的数浓度和粒径在短时间内达到峰值。  相似文献   

17.
京津冀区域是我国环境空气污染频发的重点区域之一.基于中国空气质量在线监测分析平台实时发布的2019年京津冀区域六个典型城市的颗粒物质量浓度数据,分析京津冀区域颗粒物污染特征.结果表明:京津冀区域日均PM2.5质量浓度小于等于60 μg/m3 天数占全年的68.49%-80.00%;PM10质量浓度小于等于140 μg/m3 天数占全年的75.14%-93.70%;京津冀区域颗粒物质量浓度的月分布呈“V”型规律,颗粒物质量浓度冬季最高,秋季和春季次之,夏季最低;颗粒物质量浓度日变化呈双峰型且与人为活动作息时间保持良好的一致性;应用皮尔逊相关分析法探讨不同城市间颗粒物的相关性,总结为东南和西南两条典型的显著相关路径;应用线性回归方法评估PM2.5与PM10的相关性,同一城市的PM2.5与PM10显著相关;应用空间差异率方法分析京津冀区域不同城市间颗粒物质量浓度的差异程度,石家庄和其他城市间的颗粒物空间差异率最高;天津与唐山的PM2.5空间差异最低,其COD值为0.14;天津和廊坊的PM10的空间差异最小,其COD值为0.14.  相似文献   

18.
为提高光散射扬尘监测仪对环境空气中颗粒物PM10及PM2.5的测量的稳定性及精度,通过对光散射扬尘监测仪的关键设计,提供一种温湿度传感器以及动态控制系统,消除环境湿度对采样气路的影响;设计零气校准及自动吹扫系统防止高浓度颗粒物对光学气室的污染,提高本底测量精度,从而实现光散射法扬尘监测仪测量精度更高、稳定性更好.  相似文献   

19.
一、PM相关介绍大气颗粒物质(PM)是大气中固体和液体颗粒物的总称。按其粒径大小,可分为粗分散系(粒径大于10μm)和胶体分散系(0.001-10μm)。PM10是指空气动力学直径£10μm的颗粒物,也称为可吸入颗粒物:PM2.5是指空气动力学直径£2.5μm的颗粒物,也称为可入肺颗粒物,  相似文献   

20.
为探究采暖通风方式对住宅室内外环境中PM_(2.5)浓度及其相关性的影响,于2014—2015年冬季在南京市选取3种不同采暖通风方式的住宅(顶棚辐射供暖+24 h净化新风住宅H1;独立户式地暖住宅H2;无采暖住宅H3)进行了室内外颗粒物分粒径日平均质量浓度采样和PM_(2.5)质量浓度逐时监测实验.实验结果显示,室内外颗粒物均以PM_(2.5)为主,PM_(2.5)/PM10的质量比高达74%以上,3处住宅室内外PM_(2.5)浓度相关系数分别为0.840,0.825,0.923.H1室内PM_(2.5)质量浓度水平最低,仅为室外的22.1%,且室内无粒径大于2.5μm的颗粒物;H3室内PM_(2.5)质量浓度水平最高,室内外PM_(2.5)相关系数最高,且室内存在一定量粒径大于2.5μm的颗粒物.夏热冬冷地区居民应改变传统的开窗通风模式,向净化新风系统转变,可有效降低室外大气污染对室内空气的干扰,保障室内空气品质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号