首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity. Genetic mapping in families with XLCSNB revealed two different loci on the proximal short arm of the X chromosome. These two genetic subtypes can be distinguished on the basis of electroretinogram (ERG) responses and psychophysical testing as a complete (CSNB1) and an incomplete (CSNB2) form. The CSNB1 locus has been mapped to a 5-cM linkage interval in Xp11.4 (refs 2,5-7). Here we construct and analyse a contig between the markers DXS993 and DXS228, leading to the identification of a new gene mutated in CSNB1 patients. It is partially deleted in 3 families and mutation analysis in a further 21 families detected another 13 different mutations. This gene, designated NYX, encodes a protein of 481 amino acids (nyctalopin) and is expressed at low levels in tissues including retina, brain, testis and muscle. The predicted polypeptide is a glycosylphosphatidylinositol (GPI)-anchored extracellular protein with 11 typical and 2 cysteine-rich, leucine-rich repeats (LRRs). This motif is important for protein-protein interactions and members of the LRR superfamily are involved in cell adhesion and axon guidance. Future functional analysis of nyctalopin might therefore give insight into the fine-regulation of cell-cell contacts in the retina.  相似文献   

2.
The metabolic pathways that produce 11-cis retinal are important for vision because this retinoid is the chromophore residing in rhodopsin and the cone opsins. The all-trans retinal that is generated after cone and rod photopigments absorb photons of light is recycled back to 11-cis retinal by the retinal pigment epithelium and Müller cells of the retina. Several of the enzymes involved have recently been purified and molecularly cloned; here we focus on 11-cis retinol dehydrogenase (encoded by the gene RDH5; chromosome 12q13-14; ref. 4), the first cloned enzyme in this pathway. This microsomal enzyme is abundant in the retinal pigment epithelium, where it has been proposed to catalyse the conversion of 11-cis retinol to 11-cis retinal. We evaluated patients with hereditary retinal diseases featuring subretinal spots (retinitis punctata albescens and fundus albipunctatus) and patients with typical dominant or recessive retinitis pigmentosa for mutations in RDH5. Mutations were found only in two unrelated patients, both with fundus albipunctatus; they segregated with disease in the respective families. Recombinant mutant 11-cis retinol dehydrogenases had reduced activity compared with recombinant enzyme with wild-type sequence. Our results suggest that mutant alleles in RDH5 are a cause of fundus albipunctatus, a rare form of stationary night blindness characterized by a delay in the regeneration of cone and rod photopigments.  相似文献   

3.
4.
Inherited retinal diseases are a common cause of visual impairment in children and young adults, often resulting in severe loss of vision in later life. The most frequent form of inherited retinopathy is retinitis pigmentosa (RP), with an approximate incidence of 1 in 3,500 individuals worldwide. RP is characterized by night blindness and progressive degeneration of the midperipheral retina, accompanied by bone spicule-like pigmentary deposits and a reduced or absent electroretinogram (ERG). The disease process culminates in severe reduction of visual fields or blindness. RP is genetically heterogeneous, with autosomal dominant, autosomal recessive and X-linked forms. Here we have identified two mutations in a novel retina-specific gene from chromosome 8q that cause the RP1 form of autosomal dominant RP in three unrelated families. The protein encoded by this gene is 2,156 amino acids and its function is currently unknown, although the amino terminus has similarity to that of the doublecortin protein, whose gene (DCX) has been implicated in lissencephaly in humans. Two families have a nonsense mutation in codon 677 of this gene (Arg677stop), whereas the third family has a nonsense mutation in codon 679 (Gln679stop). In one family, two individuals homozygous for the mutant gene have more severe retinal disease compared with heterozygotes.  相似文献   

5.
Identification and characterization of rod-derived cone viability factor   总被引:1,自引:0,他引:1  
Retinitis pigmentosa is an untreatable, inherited retinal disease that leads to blindness. The disease initiates with the loss of night vision due to rod photoreceptor degeneration, followed by irreversible, progressive loss of cone photoreceptor. Cone loss is responsible for the main visual handicap, as cones are essential for day and high-acuity vision. Their loss is indirect, as most genes associated with retinitis pigmentosa are not expressed by these cells. We previously showed that factors secreted from rods are essential for cone viability. Here we identified one such trophic factor by expression cloning and named it rod-derived cone viability factor (RdCVF). RdCVF is a truncated thioredoxin-like protein specifically expressed by photoreceptors. The identification of this protein offers new treatment possibilities for retinitis pigmentosa.  相似文献   

6.
The relationship between the neurosensory photoreceptors and the adjacent retinal pigment epithelium (RPE) controls not only normal retinal function, but also the pathogenesis of hereditary retinal degenerations. The molecular bases for both primary photoreceptor and RPE diseases that cause blindness have been identified. Gene therapy has been used successfully to slow degeneration in rodent models of primary photoreceptor diseases, but efficacy of gene therapy directed at photoreceptors and RPE in a large-animal model of human disease has not been reported. Here we study one of the most clinically severe retinal degenerations, Leber congenital amaurosis (LCA). LCA causes near total blindness in infancy and can result from mutations in RPE65 (LCA, type II; MIM 180069 and 204100). A naturally occurring animal model, the RPE65-/- dog, suffers from early and severe visual impairment similar to that seen in human LCA. We used a recombinant adeno-associated virus (AAV) carrying wild-type RPE65 (AAV-RPE65) to test the efficacy of gene therapy in this model. Our results indicate that visual function was restored in this large animal model of childhood blindness.  相似文献   

7.
Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible mitochondrial impairment. The OPA1 gene has been localized to 3q28-q29 (refs 13-19). We describe here a nuclear gene, OPA1, that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria. We found four different OPA1 mutations, including frameshift and missense mutations, to segregate with the disease, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.  相似文献   

8.
Isolated human microphthalmia/anophthalmia, a cause of congenital blindness, is a clinically and genetically heterogeneous developmental disorder characterized by a small eye and other ocular abnormalities. Three microphthalmia/anophthalmia loci have been identified, and two others have been inferred by the co-segregation of translocations with the phenotype. We previously found that mice with ocular retardation (the or-J allele), a microphthalmia phenotype, have a null mutation in the retinal homeobox gene Chx10 (refs 7,8). We report here the mapping of a human microphthalmia locus on chromosome 14q24.3, the cloning of CHX10 at this locus and the identification of recessive CHX10 mutations in two families with non-syndromic microphthalmia (MIM 251600), cataracts and severe abnormalities of the iris. In affected individuals, a highly conserved arginine residue in the DNA-recognition helix of the homeodomain is replaced by glutamine or proline (R200Q and R200P, respectively). Identification of the CHX10 consensus DNA-binding sequence (TAATTAGC) allowed us to demonstrate that both mutations severely disrupt CHX10 function. Human CHX10 is expressed in progenitor cells of the developing neuroretina and in the inner nuclear layer of the mature retina. The strong conservation in vertebrates of the CHX10 sequence, pattern of expression and loss-of-function phenotypes demonstrates the evolutionary importance of the genetic network through which this gene regulates eye development.  相似文献   

9.
10.
Congenital hypotrichosis associated with juvenile macular dystrophy (HJMD; MIM601553) is an autosomal recessive disorder of unknown etiology, characterized by hair loss heralding progressive macular degeneration and early blindness. We used homozygosity mapping in four consanguineous families to localize the gene defective in HJMD to 16q22.1. This region contains CDH3, encoding P-cadherin, which is expressed in the retinal pigment epithelium and hair follicles. Mutation analysis shows in all families a common homozygous deletion in exon 8 of CDH3. These results establish the molecular etiology of HJMD and implicate for the first time a cadherin molecule in the pathogenesis of a human hair and retinal disorder.  相似文献   

11.
Wei X  Malicki J 《Nature genetics》2002,31(2):150-157
A layered organization of cells is a common architectural feature of many neuronal formations. Mutations of the zebrafish gene nagie oko (nok) produce a severe disruption of retinal architecture, indicating a key role for this locus in neuronal patterning. We show that nok encodes a membrane-associated guanylate kinase-family scaffolding protein. Nok localizes to the vicinity of junctional complexes in retinal neuroepithelium and in the photoreceptor cell layer. Mosaic analysis indicates that the nok retinal patterning phenotype is not cell-autonomous. We propose that nok function in patterning of postmitotic neurons is mediated through neuroepithelial cells and is necessary for guiding neurons to their proper destinations in retinal laminae.  相似文献   

12.
The retinoblastoma protein (Rb) regulates proliferation, cell fate specification and differentiation in the developing central nervous system (CNS), but the role of Rb in the developing mouse retina has not been studied, because Rb-deficient embryos die before the retinas are fully formed. We combined several genetic approaches to explore the role of Rb in the mouse retina. During postnatal development, Rb is expressed in proliferating retinal progenitor cells and differentiating rod photoreceptors. In the absence of Rb, progenitor cells continue to divide, and rods do not mature. To determine whether Rb functions in these processes in a cell-autonomous manner, we used a replication-incompetent retrovirus encoding Cre recombinase to inactivate the Rb1(lox) allele in individual retinal progenitor cells in vivo. Combined with data from studies of conditional inactivation of Rb1 using a combination of Cre transgenic mouse lines, these results show that Rb is required in a cell-autonomous manner for appropriate exit from the cell cycle of retinal progenitor cells and for rod development.  相似文献   

13.
Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum   总被引:15,自引:0,他引:15  
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by calcification of elastic fibres in skin, arteries and retina that results in dermal lesions with associated laxity and loss of elasticity, arterial insufficiency and retinal haemorrhages leading to macular degeneration. PXE is usually found as a sporadic disorder, but examples of both autosomal recessive and autosomal dominant forms of PXE have been observed. Partial manifestations of the PXE phenotype have also been described in presumed carriers in PXE families. Linkage of both dominant and recessive forms of PXE to a 5-cM domain on chromosome 16p13.1 has been reported (refs 8,9). We have refined this locus to an 820-kb region containing 6 candidate genes. Here we report the exclusion of five of these genes and the identification of the first mutations responsible for the development of PXE in a gene encoding a protein associated with multidrug resistance (ABCC6).  相似文献   

14.
We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10(-10)) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10(-9)). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10(-14), OR = 1.51, 95% CI 1.35-1.68; rs4977756 combined P = 1.35 × 10(-14), OR = 1.39, 95% CI 1.28-1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.  相似文献   

15.
Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease and is the most severe inherited retinopathy with the earliest age of onset. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960-a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding aryl-hydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.  相似文献   

16.
Retinopathy and attenuated circadian entrainment in Crx-deficient mice   总被引:22,自引:0,他引:22  
Crx, an Otx-like homeobox gene, is expressed specifically in the photoreceptors of the retina and the pinealocytes of the pineal gland. Crx has been proposed to have a role in the regulation of photoreceptor-specific genes in the eye and of pineal-specific genes in the pineal gland. Mutations in human CRX are associated with the retinal diseases, cone-rod dystrophy-2 (adCRD2; refs 3, 4, 5), retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), which all lead to loss of vision. We generated mice carrying a targeted disruption of Crx. Crx-/- mice do not elaborate photoreceptor outer segments and lacked rod and cone activity as assayed by electroretinogram (ERG). Expression of several photoreceptor- and pineal-specific genes was reduced in Crx mutants. Circadian entrainment was also affected in Crx-/- mice.  相似文献   

17.
18.
Malattia Leventinese (ML) and Doyne honeycomb retinal dystrophy (DHRD) refer to two autosomal dominant diseases characterized by yellow-white deposits known as drusen that accumulate beneath the retinal pigment epithelium (RPE). Both loci were mapped to chromosome 2p16-21 (refs 5,6) and this genetic interval has been subsequently narrowed. The importance of these diseases is due in large part to their close phenotypic similarity to age-related macular degeneration (AMD), a disorder with a strong genetic component that accounts for approximately 50% of registered blindness in the Western world. Just as in ML and DHRD, the early hallmark of AMD is the presence of drusen. Here we use a combination of positional and candidate gene methods to identify a single non-conservative mutation (Arg345Trp) in the gene EFEMP1 (for EGF-containing fibrillin-like extracellular matrix protein 1) in all families studied. This change was not present in 477 control individuals or in 494 patients with age-related macular degeneration. Identification of this mutation may aid in the development of an animal model for drusen, as well as in the identification of other genes involved in human macular degeneration.  相似文献   

19.
Complete achromatopsia is a rare, autosomal recessive disorder characterized by photophobia, low visual acuity, nystagmus and a total inability to distinguish colours. In this disease, cone photoreceptors, the retinal sensory neurons mediating colour vision, seem viable but fail to generate an electrical response to light. Achromatopsia, or rod monochromatism, was first mapped to 2p11-2q12 (MIM 216900; ref. 3), where it is associated with missense mutations in CNGA3 (ref. 4). CNGA3 encodes the alpha-subunit of the cone cyclic nucleotide-gated cation channel, which generates the light-evoked electrical responses of cone photoreceptors. A second locus at 8q21-q22 has been identified among the Pingelapese islanders of Micronesia, who have a high incidence of recessive achromatopsia (MIM 262300). Here we narrow the achromatopsia locus to 1.4 cM and show that Pingelapese achromatopsia segregates with a missense mutation at a highly conserved site in CNGB3, a new gene that encodes the beta-subunit of the cone cyclic nucleotide-gated cation channel. Two independent frameshift deletions establish that achromatopsia is the null phenotype of CNGB3. Combined with earlier findings, our results demonstrate that both alpha- and beta-subunits of the cGMP-gated channel are essential for phototransduction in all three classes of cones.  相似文献   

20.
We identified three consanguineous Austrian kindreds with 15 members affected by autosomal recessive childhood-onset severe retinal dystrophy, a genetically heterogeneous group of disorders characterized by degeneration of the photoreceptor cells. A whole-genome scan by microarray analysis of single-nucleotide polymorphisms (ref. 2) identified a founder haplotype and defined a critical interval of 1.53 cM on chromosome 14q23.3-q24.1 that contains the gene associated with this form of retinal dystrophy. RDH12 maps in this region and encodes a retinol dehydrogenase proposed to function in the visual cycle. A homozygous 677A-->G transition (resulting in Y226C) in RDH12 was present in all affected family members studied, as well as in two Austrian individuals with sporadic retinal dystrophy. We identified additional mutations in RDH12 in 3 of 89 non-Austrian individuals with retinal dystrophy: a 5-nucleotide deletion (806delCCCTG) and the transition 565C-->T (resulting in Q189X), each in the homozygous state, and 146C-->T (resulting in T49M) and 184C-->T (resulting in R62X) in compound heterozygosity. When expressed in COS-7 cells, Cys226 and Met49 variants had diminished and aberrant activity, respectively, in interconverting isomers of retinol and retinal. The severe visual impairment of individuals with mutations in RDH12 is in marked contrast to the mild visual deficiency in individuals with fundus albipunctatus caused by mutations in RDH5, encoding another retinal dehydrogenase. Our studies show that RDH12 is associated with retinal dystrophy and encodes an enzyme with a unique, nonredundant role in the photoreceptor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号