首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulates interactions between these proteins, including the interaction of vinculin with actin and talin. The binding of talin to beta-integrin is strengthened by PtdIns(4,5)P(2), suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator. Here we show that the type I phosphatidylinositol phosphate kinase isoform-gamma 661 (PIPKI gamma 661), an enzyme that makes PtdIns(4,5)P(2), is targeted to focal adhesions by an association with talin. PIPKI gamma 661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P(2) at focal adhesions.  相似文献   

2.
Liu S  Thomas SM  Woodside DG  Rose DM  Kiosses WB  Pfaff M  Ginsberg MH 《Nature》1999,402(6762):676-681
The alpha4 integrins are indispensable for embryogenesis, haematopoiesis and immune responses, possibly because alpha4 regulates cellular functions differently from other integrins through its cytoplasmic tail. We used novel mimics of the alpha4 tail to identify molecules that could account for alpha4-specific signalling. Here we report that the alpha4 tail, but not several other alpha-subunit tails, binds tightly to the signalling adaptor paxillin. Paxillin physically associated with alpha4 integrins in Jurkat T cells at high stoichiometry, and joining the alpha4 tail to alphaIIb resulted in a complex of integrin alphaIIbbeta3 with paxillin. This association markedly enhanced the rates of alphaIIbbeta3-dependent phosphorylation of focal adhesion kinase and cell migration. It also reduced cell spreading, focal adhesion and stress fibre formation. A point mutation within the alpha4 tail that disrupts paxillin binding reversed all of these effects. Furthermore, alpha4beta1-dependent adhesion to VCAM-1 led to spreading of mouse embryonic fibroblasts derived from paxillin-null but not from wild-type mice. Thus, the tight association of paxillin with the alpha4 tail leads to distinct biochemical and biological responses to integrin-mediated cell adhesion.  相似文献   

3.
Nanoscale architecture of integrin-based cell adhesions   总被引:3,自引:0,他引:3  
Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signalling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that form a?<200-nm plaque linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a ~40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin's polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.  相似文献   

4.
Mouse embryo implantation is a complex process that includes trophoblast cells derived from ectoplacental cone (EPC) adhesion to and migration through the extracellular matrix (ECM) of uterine endometrium and invasion into the decidua. At the time of implantation, fibronectin (FN) is abundant in the decidua and is distributed pericellularly around each individual stromal cell, and its receptor (integrin α-5β-1) expression on trophoblast populations is up-regulated. The focal adhesion kinase, a 125 ku protein tyrosine kinase (pp125 FAK), is tyrosine phosphorylated upon integrin engagement with its ECM ligand, and its tyrosine phosphorylation sites then serve as the binding sites which couple it with cellular proteins that contain Src SH2 or SH3 domains. Through these linkages, pp125 FAK may integrate multiple signals triggered by integrins. The model of EPC culture %in vitro% was used to study the expression, distribution and function of pp125 FAK during EPC outgrowth on FN. Results indicated that, pp125 FAK primarily expressed and distributed in cellular focal adhesions of the front edge of trophoblast outgrowth from EPC, and was localized in the peripheral region of the individual migrating trophblast cell; antibody or antisense oligodeoxynucleotide to pp125 FAK inhibited EPC attachment and outgrowth, as well as trophoblast cells spreading and migration. This experiment demonstrated that pp125 FAK as an integrin-mediated signaling molecule was involved in EPC outgrowth %in vitro%, and played an important role during trophoblast cells interaction with FN.  相似文献   

5.
细胞黏附斑边界的位移场可以借助纳米技术测量,进而由此确定黏附斑域内应力场.目前这一领域的研究者普遍将这后一步骤当作"反问题"去处理.作者将求位移边值问题的解析方法和数值方法,用于确定细胞黏附斑域内应力场,证明它是正问题,而不是反问题.并给出用复变函数方法求解,得到圆形、椭圆形和多角形单黏附斑问题的精确分析解.阐述了对于多黏附斑问题和任意形状多黏附斑问题,无论是连续或离散位移边界条件,用边界积分方程-边界元方法求解,确定细胞黏附斑域内应力场也是正问题,而不是反问题.  相似文献   

6.
Lysyl oxidase is essential for hypoxia-induced metastasis   总被引:1,自引:0,他引:1  
Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.  相似文献   

7.
Commitment to the B-lymphoid lineage depends on the transcription factor Pax5.   总被引:77,自引:0,他引:77  
S L Nutt  B Heavey  A G Rolink  M Busslinger 《Nature》1999,401(6753):556-562
  相似文献   

8.
Izard T  Evans G  Borgon RA  Rush CL  Bricogne G  Bois PR 《Nature》2004,427(6970):171-175
Vinculin is a conserved component and an essential regulator of both cell-cell (cadherin-mediated) and cell-matrix (integrin-talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to alpha-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of alpha-actinin to also bind to Vh and displace Vt from pre-existing Vh-Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talin's effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.  相似文献   

9.
J L Guan  D Shalloway 《Nature》1992,358(6388):690-692
Increasing evidence indicates that the integrin family of cell adhesion receptors can transduce biochemical signals from the extracellular matrix to the cell interior to modulate cell growth and differentiation. We have shown that integrin/ligand interactions can trigger tyrosine phosphorylation of a protein of M(r) 120,000 (pp120), so it is possible that signal transduction by integrins might involve activation of intracellular protein tyrosine kinases as an early event in cell binding to the extracellular matrix. Here we report that pp120 is identical to the focal adhesion-associated protein tyrosine kinase pp125FAK (refs 3, 4). We show that tyrosine phosphorylation of this protein is modulated both by cell adhesion and transformation by pp60v-src, and that these changes in phosphorylation are correlated with increased pp125FAK tyrosine kinase activity. A model is proposed to relate these findings to the molecular basis of anchorage-independent growth of transformed cells.  相似文献   

10.
Regulation of cell movement is mediated by stretch-activated calcium channels.   总被引:10,自引:0,他引:10  
J Lee  A Ishihara  G Oxford  B Johnson  K Jacobson 《Nature》1999,400(6742):382-386
Intracellular calcium regulates many of the molecular processes that are essential for cell movement. It is required for the production of actomyosin-based contractile forces, the regulation of the structure and dynamics of the actin cytoskeletons, and the formation and disassembly of cell-substratum adhesions. Calcium also serves as a second messenger in many biochemical signal-transduction pathways. However, despite the pivotal role of calcium in motile processes, it is not clear how calcium regulates overall cell movement. Here we show that transient increases in intracellular calcium, [Ca2+]i, during the locomotion of fish epithelial keratocytes, occur more frequently in cells that become temporarily 'stuck' to the substratum or when subjected to mechanical stretching. We find that calcium transients arise from the activation of stretch-activated calcium channels, which triggers an influx of extracellular calcium. In addition, the subsequent increase in [Ca2+]i is involved in detachment of the rear cell margin. Thus, we have defined a mechanism by which cells can detect and transduce mechanical forces into biochemical signals that can modulate locomotion.  相似文献   

11.
Pax3 functions at a nodal point in melanocyte stem cell differentiation   总被引:2,自引:0,他引:2  
Lang D  Lu MM  Huang L  Engleka KA  Zhang M  Chu EY  Lipner S  Skoultchi A  Millar SE  Epstein JA 《Nature》2005,433(7028):884-887
  相似文献   

12.
Cell-to-cell and cell-to-extracellular matrix (ECM) interactions in the functions of cell adhesion and signal transduction are important in global control of cell phenotypes and cell behavior and are crucial for maintenance of homeostasis and structural/functional stabilization of tissues and organs. Cell adhesion receptors are recognized as the molecular basis of cell adhesion. Cadherin and Integrin are widely expressed adhesion receptors in most tissues. They are transmembrane glycoproteins which, through their cytoplasmic domain, bind to many proteins at the inner surface of cell membrane to form molecule-linkage complexes and then connect with the cytoskeleton. Through cell adhesion receptors a network functioning as cell adhesion and signal transduction is organized between tissue cells and cell-ECM. In this regard cell adhesion receptors play an important role in regulation of morphogenesis, cell-cell recognition, cell migration, cell sorting and the determination of cell's fate in development. They mediate cell functions and their fault expression is intimately correlated with development of disorders like cancer. Several isoforms of Integrin were found to have tumor suppressor effect. Some components in the molecule-linkage of focal contact are actin-binding proteins as well as substrates of kinase in the Integrin initiated signal pathway to play a role as signal transducer. Some of these molecules exhibited tumor suppressor effect too. Decreased expression of E-Cadherin has been demonstrated in many epithelium originated carcinomas. Cadherin associated membrane adhesion plaque molecule β-Catenin is also involved in the oncogene Wnt signal pathway. Both E-Cadherin and β-Catenin were proved respectively with tumor suppressor effect against invasiveness and metastasis. That Cadherin is important for the posttranslationally functional expression of Connexin has been supported by evidence from developmental biology and cancer cell differentiation studies to suggest that some sort of interrelation feedback control exists between the two signal pathways.  相似文献   

13.
Etienne-Manneville S  Hall A 《Nature》2003,421(6924):753-756
Cell polarity is a fundamental property of all cells. In higher eukaryotes, the small GTPase Cdc42, acting through a Par6-atypical protein kinase C (aPKC) complex, is required to establish cellular asymmetry during epithelial morphogenesis, asymmetric cell division and directed cell migration. However, little is known about what lies downstream of this complex. Here we show, through the use of primary rat astrocytes in a cell migration assay, that Par6-PKCzeta interacts directly with and regulates glycogen synthase kinase-3beta (GSK-3beta) to promote polarization of the centrosome and to control the direction of cell protrusion. Cdc42-dependent phosphorylation of GSK-3beta occurs specifically at the leading edge of migrating cells, and induces the interaction of adenomatous polyposis coli (Apc) protein with the plus ends of microtubules. The association of Apc with microtubules is essential for cell polarization. We conclude that Cdc42 regulates cell polarity through the spatial regulation of GSK-3beta and Apc. This role for Apc may contribute to its tumour-suppressor activity.  相似文献   

14.
A Pax3/Pax7-dependent population of skeletal muscle progenitor cells   总被引:2,自引:0,他引:2  
Relaix F  Rocancourt D  Mansouri A  Buckingham M 《Nature》2005,435(7044):948-953
  相似文献   

15.
Bianco A  Poukkula M  Cliffe A  Mathieu J  Luque CM  Fulga TA  Rørth P 《Nature》2007,448(7151):362-365
Although directed migration is a feature of both individual cells and cell groups, guided migration has been studied most extensively for single cells in simple environments. Collective guidance of cell groups remains poorly understood, despite its relevance for development and metastasis. Neural crest cells and neuronal precursors migrate as loosely organized streams of individual cells, whereas cells of the fish lateral line, Drosophila tracheal tubes and border-cell clusters migrate as more coherent groups. Here we use Drosophila border cells to examine how collective guidance is performed. We report that border cells migrate in two phases using distinct mechanisms. Genetic analysis combined with live imaging shows that polarized cell behaviour is critical for the initial phase of migration, whereas dynamic collective behaviour dominates later. PDGF- and VEGF-related receptor and epidermal growth factor receptor act in both phases, but use different effector pathways in each. The myoblast city (Mbc, also known as DOCK180) and engulfment and cell motility (ELMO, also known as Ced-12) pathway is required for the early phase, in which guidance depends on subcellular localization of signalling within a leading cell. During the later phase, mitogen-activated protein kinase and phospholipase Cgamma are used redundantly, and we find that the cluster makes use of the difference in signal levels between cells to guide migration. Thus, information processing at the multicellular level is used to guide collective behaviour of a cell group.  相似文献   

16.
Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1 gamma (PtdInsPKI gamma) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKI gamma (PtdInsPKI gamma-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKI gamma-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKI gamma-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion.  相似文献   

17.
S Kaech  L Covic  A Wyss  K Ballmer-Hofer 《Nature》1991,350(6317):431-433
Polyoma middle-T antigen is required for tumorigenesis in animals and for viral transformation of a variety of cells in culture (reviewed in ref. 1). Middle-T associates with and thereby activates p60c-src, a cellular tyrosine kinase homologous to the oncogene product of Rous sarcoma virus. Activation of p60c-src by middle-T is accompanied both by dephosphorylation of tyrosine 527, a site which negatively regulates src kinase src kinase activity (reviewed in refs 4-6) and by autophosphorylation on tyrosine 416 (refs 7-10). Phosphoprotein p60c-src is subject to cell cycle-specific regulation. It is most active during mitosis and repressed in interphase. Here we report that mitotic p60c-src is dephosphorylated at tyrosine 527. We also show that in cells expressing middle-T, src kinase activity is high both in mitosis and during interphase. An oncogenic mutant src protein, p60c-src(527F), where tyrosine 527 is substituted by phenylalanine, is also highly active in all phases of the cell cycle.  相似文献   

18.
Inhibition of JNK activation through NF-kappaB target genes.   总被引:26,自引:0,他引:26  
G Tang  Y Minemoto  B Dibling  N H Purcell  Z Li  M Karin  A Lin 《Nature》2001,414(6861):313-317
  相似文献   

19.
Stage-specific control of neuronal migration by somatostatin.   总被引:8,自引:0,他引:8  
Elina Yacubova  Hitoshi Komuro 《Nature》2002,415(6867):77-81
Developing neurons transiently express somatostatin and its receptors, but little is known about their function at these early stages. As we thought that endogenous somatostatin might control the migratory behaviour of immature neurons, we have examined the effects of somatostatin in cerebellar granule cells of early postnatal mice, because these cells express all five types of somatostatin receptors before the initiation of their migration. Here we show that somatostatin has opposite and stage-specific effects on the migration of cerebellar granule cells. Activation of somatostatin receptors increases the rate of granule cell migration near their birthplace, but decreases the rate near their final destination. Furthermore, somatostatin enhances the size and frequency of spontaneous Ca2+ fluctuations in the early phase of migration, whereas it eliminates spike-like Ca2+ transients in the late phase. Somatostatin-induced changes at both early and late phases are reversed by a blockade of K+ channel activity. These results indicate that somatostatin may provide an essential cue for accelerating the movement of granule cells in the early phase and for terminating the movement in the late phase through altering intracellular Ca2+ concentrations and K+ channel activity.  相似文献   

20.
During vertebrate development, the specification of distinct cell types is thought to be controlled by inductive signals acting at different concentration thresholds. The degree of receptor activation in response to these signals is a known determinant of cell fate, but the later steps at which graded signals are converted into all-or-none distinctions in cell identity remain poorly resolved. In the ventral neural tube, motor neuron and interneuron generation depends on the graded activity of the signalling protein Sonic hedgehog (Shh). These neuronal subtypes derive from distinct progenitor cell populations that express the homeodomain proteins Nkx2.2 or Pax6 in response to graded Shh signalling. In mice lacking Pax6, progenitor cells generate neurons characteristic of exposure to greater Shh activity. However, Nkx2.2 expression expands dosally in Pax6 mutants, raising the possibility that Pax6 controls neuronal pattern indirectly. Here we provide evidence that Nkx2.2 has a primary role in ventral neuronal patterning. In Nkx2.2 mutants, Pax6 expression is unchanged but cells undergo a ventral-to-dorsal transformation in fate and generate motor neurons rather than interneurons. Thus, Nkx2.2 has an essential role in interpreting graded Shh signals and selecting neuronal identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号