首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 687 毫秒
1.
用化学共沉淀法制得MnO2电化学电容器电极材料,采用X射线衍射(XRD)、红外光谱(IR)、X射线光电子能谱(XPS)、循环伏安(CV)、恒电流充放电和交流阻抗测试对该材料的晶体结构、化学成分及电化学性能进行了表征和测试。物相测试表明该电极材料为水合无定型α-MnO2。用该电极材料制得的电化学电容器兼具双电层电容和法拉第准电容两种电荷储存机理,且以双电层电容为主。循环伏安测试和恒流充放电测试均表明,电极在Na2SO4溶液中比在KOH溶液中表现出更好的电容性,而且比容量随扫描速率和电流的增大而减少。在10mA的充放电流下测得的单电极比容量可达307.5F/g。  相似文献   

2.
以等物质的量的高锰酸钾和乙酸锰为原料,采用机械化学法制备出弱结晶型α-MnO2超级电容器电极材料.在1.2V电压内,200mA·g-1电流密度下对对称型超级电容器进行恒流充放电测试.采用XRD法、循环伏安及交流阻抗法对充放电前后电极材料的结构以及电化学性能进行表征,首次采用求斜率法对充放电曲线分析.结果表明:超级电容器表现出法拉第电容与双电层电容的双重特征;在循环过程中,电化学惰性物质Mn3O4生成,循环伏安图中氧化还原峰逐渐消失;充放电曲线的法拉第电容特征逐渐消失而接近双电层电容理想曲线;超级电容器的比容量、等效串联电阻发生了对应的变化,其最大电极比容量达到416F·g-1,经过近500次循环后,比容量为220F·g-1.  相似文献   

3.
采用化学共沉淀法制备了超级电容器电极材料MnO2.采用XRD对其结构进行表征,并用循环伏安、交流阻抗、恒流充放电等测试手段研究了材料在1mol/L Li2SO4电解液中的电容性能.结果表明,MnO:电极在1mol/L Li2SO4电解液中具有优良的电容性能,以3mA/cm^2电流密度恒流充放电时,单电极比容量可达239.9F/g.经1000次恒流充放电循环后,电极比容量下降了11.7%.Nyquist曲线显示电极的电荷转移电阻较小.  相似文献   

4.
采用液相氧化法制备了MnO2超级电容器电极材料,以MnO2为正极材料,活性炭(AC)为负极材料,丙烯腈作聚合物单体,碳酸二甲酯(DMC)与碳酸乙烯酯(EC)的混和液作增塑剂,高氯酸锂为支持电解质,采用内聚合法制备PAN基凝胶聚合物电解质MnO2/AC混合电容器.通过循环伏安、交流阻抗、恒流充放电等测试方法对混合电容器的电化学性能进行了测试.结果表明:混合电容器的工作电压为2.5 V,比容量为27.3 F/g(i=0.5 mA/cm2),比同电解质体系的AC/AC电容器提高约48.21%.  相似文献   

5.
以柠檬酸三钠为络合剂,采用络合反应快速冷冻沉淀法制备出铜掺杂氢氧化镍超细粉体样品材料,采用XRD、TEM和TG-DSC对其结构进行表征,并测试其电化学性能。实验结果表明,样品材料粉体近似为球形,粒径为50nm左右,热分解反应温度较低(269.4℃)且含较多的结晶水。充放电结果表明,当Cu的掺杂量为5%时,样品电极在恒流80mA/g下充电6h,40mA/g放电,终止电压为1.0V时,放电电压稳定于1.260V的时间较长,开路电位为1.462V,放电比容量可达362.976mA·h/g,且循环充放电性能较好。  相似文献   

6.
采用简单的溶剂热法, 一步合成黄铁矿型FeS2纳米微球, 并研究其作为超级电容器电极材料的电化学性能。用 X射线衍射(XRD)、扫描电镜(SEM)和氮气吸脱附法表征材料的结构和形貌, 通过循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试材料在3种常见电解液(6M KOH, 6M NaOH和1M Na2SO4)中的超级电容性能。结果表明, 产物为均匀的黄铁矿型FeS2纳米微球, 直径为300~600 nm, 均呈现明显的赝电容特征。电解液为KOH时, 比电容最高, 电流密度为2 A/g时, 比电容达到732.9 F/g; 电流密度增大到20 A/g时, 比电容仍能达到307.1 F/g。容量保持率为41.9%, 表明所合成的FeS2纳米微球是一种优异的超级电容器电极材料。  相似文献   

7.
超级电容器用活性炭电极的制备及电化学性能研究   总被引:2,自引:0,他引:2  
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能.  相似文献   

8.
将经过二次活化处理的活性炭材料制作的电极片组装成碳基电化学电容器. 通过恒电流充放电实验,表明其具有良好的电化学充放电性能--活性物质的比容量为173.2 F/g. 恒功率充放电实验证明该电容器在大功率充放电条件下活性物质的能量密度大于5.0 Wh/kg.电化学电容器与镍氢电池组成的复合电源系统具有优良的脉冲充放电特性,脉冲性能与镍氢电池相比有明显的提高,可以应用于GSM, CDMA移动通讯系统.初步探讨了高电压型电容器的制备工艺,并组装了具有10 V工作电压的实用型电容器.  相似文献   

9.
采用固相合成法制备了MnO2超级电容器材料,并用X射线衍射(XRD)、循环伏安、交流阻抗、恒流充放电及循环寿命测试等方法对所制得的MnO2电极材料的结构和电化学特性进行了研究.结果表明所制备的MnO2为无定形结构,该电极材料在有机电解液1.0 mol·L-1 LiClO4/AN中比在1.0 mol·L-1 LiClO4/EC+DMC中有更好的电化学性能,电位窗口为0.1~1.1 V(vs.Ag),比电容达171.2 F/g,并具有良好的准电容特性.在1.0 mol·L-1 LiClO4/AN有机电解液中,该电极以1.0 mA/cm2充放电电流密度循环5 000次衰减仅为1.3%,显示了良好的循环寿命.  相似文献   

10.
在0.1 mol/L MnSO4水溶液中,采用恒电位电沉积法在ITO上制备了具有纳米结构的超级电容器活性电极材料MnO2。对制备产物进行了SEM、XRD和TG分析,用循环伏安法和恒电流充放电法研究了它的电化学性质。结果表明:在0.5 mol/L Na2SO4溶液中,该MnO2电极材料表现出良好的电容性能,当电流密度分别为1 A/g、2 A/g和3 A/g时,比电容分别为266 F/g、202 F/g和186 F/g。该纳米材料是一种潜在的电化学电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号