首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的分析高速电主轴温度场分布情况,为研究高速电主轴温升、热变形预测提供理论依据.方法建立高速电主轴1/4三维有限元模型,基于损耗实验计算主轴电机及轴承生热率前提下分析高速电主轴温升分布情况.通过电主轴测试系统建立温升实验,测量高速电主轴外壳不同部位温升验证有限元仿真结论.结果仿真结果表明:高速电主轴稳态温度场中转子处温度最高,温度为84.4℃;高速主轴壳体最高温升出现在电主轴轴头处,温升为23℃,与实验结果相比误差为8.6%.结论通过分析温升仿真和实验得到高速主轴外壳不同部位温升不同,外壳温度变化是一个非线性变化过程,前2000s温度快速升高,2000s后温度逐步稳定.此结论为有效控制高速主轴温升,减小主轴变形及提高主轴精度提供理论基础.  相似文献   

2.
介绍了高速木工机械电主轴的特点,分析了高速木工机械电主轴单元的热变形机理.建立了某型高速木工机械电主轴热态特性有限元分析模型,利用ANSYS进行了稳态温度场分析,并利用分布加载瞬态热分析模拟了机床的实际工作情况,得到了电主轴的温度场分布情况,为有效控制电主轴的温升提供了理论依据.在分析结果的基础上,提出了改善电主轴热态特性的措施,为电主轴冷却结构设计提供了参考.  相似文献   

3.
以ADGM15数控车床电主轴为研究对象,基于热流网络法的思想,建立电主轴前端主轴、轴承和轴承座为一体的支撑系统热传递模型。计算和分析了不同工作转速和载荷下的支撑系统温度场分布情况。研究结果表明:速度对支撑系统温升及温度分布影响最大,轴向载荷和径向载荷对支撑系统温升及温度分布影响相同,温度最高点位于轴承的球和内滚道接触区域上。仿真结果和计算结果的误差小于4.5%,这说明所建立的温度节点模型是可靠的,可为下一步计算和分析电主轴热变形提供依据。  相似文献   

4.
目的研究油气润滑系统及转速各参数对高速电主轴温度与热变形的影响,为提高数控机床加工精度提供理论依据.方法采用单一因素实验法,基于恒温水冷控制系统和油气润滑系统实验平台进行电主轴热变形实验;实验分析进气压力、供油时间间隔、单次供油量及转速四个参数对电主轴各位置温度及轴头位置热变形的影响.结果适当的进气压力及润滑油量可以使主轴各部分温升与轴头位置热变形量相对较小,转速对于电主轴的温升及热变形影响较为显著,且转轴Z方向(轴向)热变形量最大,转速为16 000 r/min时,变形量可达到83.562μm.结论电主轴油气润滑系统中的进气压力、供油时间间隔、单次供油量以及转速对电主轴各位置温度及转轴X、Y、Z三个方向热变形量均有影响.  相似文献   

5.
高速电主轴热态特性的ANSYS仿真分析   总被引:3,自引:0,他引:3  
分析高速电主轴的发热和散热特性,建立高速电主轴热态分析有限元模型.运用 ANSYS有限元软件,分析热稳定状态下电主轴的温度场分布以及冷却润滑系统对电主轴温升的影响.分析结果表明,提高电主轴现有冷却润滑系统的冷却效率可有效控制轴承的温升,但对转子轴的温升影响很小,要有效控制转子轴的温升和提高电主轴的精度和寿命,必须研究转子轴的冷却途径和方法.同时,仿真分析转速对电主轴温升的影响,揭示电主轴温度场分布的非线性特征,为电主轴温升的在线监测和控制提供理论依据.  相似文献   

6.
目的提出偏最小二乘方法(Partial Least Squares,PLS),对不同工况下的电主轴热变形进行预测,并分析多个温度变量和三维热变形的相关关系.方法以型号为150MD24Z7.5的电主轴为研究对象,采用精密传感器测量稳态条件下电主轴的热变形和温升数据,根据PLS模型内部分析机理,利用提取的主成分对变量的解释能力、精度及变量整体相关关系进行分析.结果分析结果验证了自变量温升之间存在多重相关性,采用PLS方法建模有益于模型精度的提高,模型提取的主成分能够反应原始变量的大多数信息,自变量温升和因变量热变形之间存在明显的线性相关关系,PLS模型的预测精度优于多元回归模型.结论电主轴热变形的PLS模型预测精度较高,适用于实际加工工况,对热误差的补偿具有补充意义.  相似文献   

7.
为了减少电主轴的热误差,提高数控机床的加工精度,对于时变速度的主轴运转,分别采用多元自回归方法和遗传径向基函数神经网络方法建立电主轴热误差预测模型.根据2种模型对电主轴热变形产生机理的不同表述形式,比较二者的计算效率和拟合精度.研究表明:在相同温升变量的条件下,二者的收敛速度和运算时间相差无几;在预测精度方面2种建模方...  相似文献   

8.
为研究数控转台传动系统元动作的热误差建模方法,首先介绍了元动作理论以及有限元数值模拟的温度场模型假设及边界条件,并分析了温度场仿真所需的摩擦机理及参数计算方法 .采用ANSYS仿真分析从稳态和瞬态两个方面对转动元动作进行数值模拟,并给出其中关键元动作的温升曲线,分析了元动作瞬态、稳态及热-结构耦合温度场和变形场,得到元动作温度分布云图、温升量及热变形量.通过热变形理论计算和热变形有限元分析,得到考虑动作件热变形的传动系统元动作热误差模型.  相似文献   

9.
数控机床主轴热特性分析   总被引:2,自引:0,他引:2  
主轴热误差是数控机床热误差的主要组成部分,热弹性现象是交替变化的热源作用在构件上产生的,误差补偿是提高机床精度的最有效方法之一.为此,提出并分析了一维主轴热弹性现象产生的原因及其重要特征,并通过有限元分析和实验验证了热动态特性的存在及变化规律.随着时间的增长,温升.热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态.在传热过程中,随着传热距离的增加,温度变化滞后性越大.  相似文献   

10.
建立了数控机床电主轴的热动力学模型,基于热动力学理论对电主轴系统的热源分布及温度场的传热特性进行分析.采用互相关和互信息量算法研究了数控机床电主轴系统的热敏感特性,分析了温度场对热变形的影响规律及耦合特性,结果表明电主轴系统存在热敏感区域并具有热漂移特性.通过在热敏感区域内筛选温度敏感点从而建立热误差预测模型,实现了对电主轴轴向和径向热变形建模和预测.以YK73200数控齿轮磨床为试验平台开展了电主轴系统的热敏感特性试验.通过对磨床电主轴系统热变形预测值与实测值进行分析和对比,验证了电主轴系统热敏感区域温度与相应热漂移之间的内在关系模型,试验结果为开展精密数控机床热误差补偿技术研究提供理论指导和实验基础.  相似文献   

11.
目的通过对TX1600G复合式镗铣加工中心主轴部件热误差测量实验研究,找到主轴热关键点位置,检测其温升情况以及其热变形,进而确定产生热误差的主要影响区域.方法设计温度与热误差测量实验方案,采用红外热像仪布置和优化温度测点,并采集温度数据,对比各位置测点的温升情况确定热关键点;采用API主轴分析仪测量X、Y、Z三个方向的热变形值,对比数据进而确定热变形最大的方向.结果主轴在转速3 000 r/min下,当实验达到热平衡时,Z向热伸长最大;主轴中部的前后端轴承位置的温升较大,为热关键点,且Z向热变形曲线与温升曲线的趋势基本相同.结论加工中心主轴在实际运行中的误差主要是由温升引起的轴向热伸长误差,控制Z向伸长热变形能有效地提高加工精度.  相似文献   

12.
目的分析170SD30电主轴温度场分布情况,为提高主轴加工精度提供理论依据.方法建立电主轴数学模型及1/4三维几何模型,实验验证电主轴模型的可靠性.利用COMSOL软件模拟电主轴的温度分布,研究主轴转速、径向磨削力对电主轴温升的影响.结果电主轴的最高温度出现在后轴承处,温度为47.7℃;电主轴最低温度出现在冷却水水道处,温度为16.2℃;转子到定子间的空气温度迅速递减;在冷却液流量达到0.35 m3/h时,对比电主轴后轴承外表面处温度的实验数据与模拟数据,平均温差为0.25℃,误差为1.3%.结论轴承和转子处于高温区,由于轴承发热率大,而后轴承所处位置的结构不利于散热,导致后轴承温度最高;由于定、转子间隙的传热系数低,致使转子到定子的温度急剧降低;转速对后轴承温升影响最大,而磨削力对前轴承温升影响最大.  相似文献   

13.
目的为减小传统传递矩阵法计算高速电主轴转子系统临界转速产生的误差,分析高转速对主轴系统的影响,解决传统矩阵法运算精度降低的问题.方法以170SD30电主轴作分析对象,考虑陀螺力矩和剪切等影响因素,利用Riccati传递矩阵法建立电主轴理论模型,同时运用Matlab编程并计算高速电主轴前3阶临界转速和固有频率等动力学参数.结果仿真数据与实验数据对比,Riccati传递矩阵法与实验结果最大误差为7.2%,比传统传递传递矩阵法精度提高了2.3%.结论验证了Riccati传递矩阵法准确性与可行性,提高了传递矩阵法的计算速度与计算稳定性.  相似文献   

14.
对高速电主轴温度场分布随转速的变化规律进行了研究。通过在外壳上布置一定数量的温度传感器,对不同转速下的外壳温度进行实时测量,并将实验结果与ANSYS的模拟结果进行对比,验证了采用在电主轴外壳上布置多个测点测量与仿真相结合的方法来预测电主轴内部温度场分布的可行性;另外还分析了在不同转速下,高速电主轴关键部位的温升,仿真结果表明:主轴在6000~10000 r/min时,温升呈线性增加,在大于10000 r/min后,温升以指数规律增加。  相似文献   

15.
提出了基于Timoshenko梁理论的主轴刚度与热的耦合模型,基于有限元方法,通过研究电主轴主要结构参数与润滑方式对主轴刚度和前轴承温升的影响,模拟了主轴的刚度与热性能,给出了高速电主轴系统优化方案.研究结果表明,选用油气润滑方式,当滚珠直径为10.25mm、主轴直径为100mm时,优化后前轴承的温升从优化前的26.2℃降低至22.0℃,相应地,主轴刚度从195N/μm增加至220N/μm.  相似文献   

16.
针对电主轴热变形建模技术中温度测点的分布和数量问题,提出优化热关键点的新方法.根据测得的温度和热变形数据序列,该方法采用模糊聚类法将测温点进行分组,建立灰色关联分析模型综合分析和评价电主轴温度场分布中各测点对主轴热变形的影响程度并将其排序,最后采用修正可决系数进行优化选择.通过与已有文献结论的比较,说明该方法的可行性和有效性.该方法减小了温度变量和建模所需的时间,也为工程经验提供了理论支撑.  相似文献   

17.
电主轴具有"零传动"、结构简单的特性,在高速切削机床中得到了广泛的应用,极大地提高了机床的精度和可靠性.然而,由于电机和轴承等热源的存在,将导致主轴热变形,从而降低加工精度,甚至损坏主轴系统.为此,基于建立的主轴系统模型,使用有限元分析方法,研究了主轴系统的温度场空间分布和由此导致的主轴变形云图,获得的热-结构耦合特性可为主轴系统的热补偿提供理论支撑,从而保障加工的精度和可靠性.  相似文献   

18.
为了深入研究永磁同步电机电主轴热特性,综合考虑轴承热诱导预紧力及润滑油黏温效应等因素,并基于系统内部多参量耦合作用关系,建立永磁同步电机电主轴热-结构耦合计算方法.以某型号永磁同步电机电主轴为研究对象,进行了温升及热变形测量,试验结果与仿真计算对比表明所建立的计算方法具有足够的精度.采用该计算方法分析了永磁同步电机电主轴热特性,结果表明:电主轴转子温升较低,前后轴承受配合方式、装配位置及热诱导预紧力等因素影响,使轴芯沿轴向存在13℃左右的温差,导致电主轴轴向热伸长成为影响加工精度的主要原因.  相似文献   

19.
为了在设计阶段解决高速主轴在实际加工中因温升过高而突然失效问题,构建了主轴热-结构耦合有限元瞬态分析模型.提出了基于接触角迭代法的滚动轴承生热功率求解方法,利用电动机效率分析法求解其生热功率.引入分形理论与蒙特卡罗方法计算结合面间接触热导,有效避免了统计学方法的不准确性与实验法通用性不强的缺陷.由雷诺数判定冷却液流动状态,并依据努赛尔数计算出主轴不同部件的对流换热系数.将上述边界条件施加到有限元模型中,对主轴温度场与热变形进行仿真.结果表明,高速主轴热特性建模方法正确,并能准确预测主轴温度场分布和热变形.  相似文献   

20.
为了深入研究电主轴热特性,通过分析轴承非线性力学特性与热效应间的耦合作用机制,建立了综合考虑热诱导预紧力和黏温效应的轴承动态生热计算模型;在引入接触热阻的基础上,基于系统内部多参量耦合关系,建立了电主轴热-结构耦合计算方法。以某型号电主轴为试验平台,进行了温升及热变形试验,利用试验数据对所建模型和分析方法进行了验证。最后,采用所建模型,对电主轴进行了热特性分析,结果表明:不同工况下电主轴仿真结果与试验数据吻合度良好,所建模型和分析方法进一步提高了仿真计算精度;电主轴温度场分布表现为外冷内热;轴芯热积聚导致的电主轴轴向热伸长是影响加工精度的主要因素;受到配合方式和装配位置的影响,轴承在温升过程中预紧力不断减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号