首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invention of atomic force microscopy(AFM) has provided new technology for measuring specific molecular interaction forces.Using AFM single-molecule force spectroscopy(SMFS) techniques,CD20-Rimximab rupture forces were measured on purified CD20 proteins,Raji cells,and lymphoma patient B cells.Rimximab molecules were linked onto AFM tips using AFM probe functionalization technology,and purified CD20 proteins were attached to mica using substrate functionalization technology.Raji cells(a lymphoma cell line) or lymphoma patient cells were immobilized on a glass substrate via electrostatic adsorption and chemical fixation.The topography of the purified CD20 proteins,Raji cells,and patient lymphoma cells was visualized using AFM imaging and the differences in the rupture forces were analyzed and measured.The results showed that the rupture forces between the CD20 proteins on Raji cells and Rituximab were markedly smaller than those for purified CD20 proteins and CD20 proteins on lymphoma patient B cells.These findings provide an effective experimental method for investigating the mechanisms underlying the variable efficacy of Rituximab.  相似文献   

2.
The advent of atomic force microscopy (AFM) provides a powerful tool for investigating the behaviors of single living cells under near physiological conditions. Besides acquiring the images of cellular ultra-microstruc- tures with nanometer resolution, the most remarkable advances are achieved on the use of AFM indenting tech- nique to quantify the mechanical properties of single living ceils. By indenting single living cells with AFM tip, we can obtain the mechanical properties of cells and monitor their dynamic changes during the biological processes (e.g., after the stimulation of drugs). AFM indentation-based mechan- ical analysis of single cells provides a novel approach to characterize the behaviors of cells from the perspective of biomechanics, considerably complementing the traditional biological experimental methods. Now, AFM indentation technique has been widely used in the life sciences, yielding a large amount of novel information that is meaningful to our understanding of the underlying mechanisms that govern the cellular biological functions. Here, based on the authors' own researches on AFM measurement of cellular mechani- cal properties, the principle and method of AFM indentationtechnique was presented, the recent progress of measuring the cellular mechanical properties using AFM was summa- rized, and the challenges of AFM single-cell nanomechani- cal analysis were discussed.  相似文献   

3.
Membrane proteins are crucial in cell physiological activities and are the targets for most drugs.Thus,investigating the behaviors of membrane proteins not only provide deeper insights into cell function,but also help disease treatment and drug development.Atomic force microscopy is a unique tool for investigating the structure of membrane proteins.It can both image the morphology of single native membrane proteins with high resolution and,via single-molecule force spectroscopy(SMFS),directly measure their biophysical properties during molecular physiological activities such as ligand binding and protein unfolding.In the context of molecular biomechanics,SMFS has been successfully used to understand the structure and function of membrane proteins,complementing the static three-dimensional structures of proteins obtained by X-ray crystallography.Here,based on the authors’antigen-antibody binding force measurements in clinical tumor cells,the principle and method of SMFS is discussed,the progress in using SMFS to characterize membrane proteins is summarized,and challenges for SMFS are presented.  相似文献   

4.
Central dogma at the single-molecule level in living cells   总被引:1,自引:0,他引:1  
Li GW  Xie XS 《Nature》2011,475(7356):308-315
  相似文献   

5.
Fluorescence imaging of single molecules is becoming a powerful tool to examine biological processes at the molecular level.Using total internal reflection fluorescence microscopy (TIRFM),it has been possible to study the dynamic behavior of single molecules on living cell membranes.Herein,we briefly review the application of TIRFM-based single-molecule imaging in studies of membrane receptors involved in signal transduction.Furthermore,we discuss several examples of our own research on growth factor receptors,including TGF-β receptors,HER2,and EGFR,and speculate possible applications of this technique to investigate other cellular events occurring on or near the plasma-membrane.  相似文献   

6.
Atomic force microscopy is a novel method for imaging and characterization in biomedicine. However, high-resolution imaging of living samples from cells to tissues still remains a challenge. In this paper, two types of AFM working mode (contact mode and tapping mode) which are utilized for the imaging of living cells and tissues are discussed. A new magnetic tapping mode (MAC mode), which is more suitable for living samples, and a novel data collecting system named TREC, are also introduced.  相似文献   

7.
Cell membranes play a key role in cellular activities. Fish erythrocytes, prototype of the nucleated erythrocytes of lower vertebrates, are predominantly oval, biconvex discs with elliptical nucleus and much larger in size than human erythrocytes. In attempts to disclose the correlation of membrane structure between fish and human erythrocytes, we used in situ atomic force microscope (AFM) combined with single-molecule force spectroscopy to study the membrane structure of Crucian carp erythrocytes under quasi-native conditions. Our results revealed the asymmetric distribution of proteins in Crucian carp erythrocyte membrane: the outer leaflet of membrane is rather smooth without any proteins, whereas the inner leaflet of membrane is very rough with dense proteins. The asymmetry of fish erythrocyte membrane structure fits well with the semi-mosaic model of human erythrocyte membrane structure. This similarity of membrane structure between human and fish erythrocytes extends the semimosaic model of erythrocytes membrane structure to a wider range of species.  相似文献   

8.
9.
Enhancement of the SNR (signal to noise ratio) in single-molecule imaging is significantly important for improving image resolu-tion and distinguishing the fine structures of single molecules at a higher precision level.Image processing techniques have dem-onstrated the remarkable capability to improve the SNR and the resolution level by breaking through some inherent limitations unresolved by instrument hardware optimization.In this paper, we focus on single-biomolecule imaging using atomic force mi-crosco...  相似文献   

10.
Jain A  Liu R  Ramani B  Arauz E  Ishitsuka Y  Ragunathan K  Park J  Chen J  Xiang YK  Ha T 《Nature》2011,473(7348):484-488
Proteins perform most cellular functions in macromolecular complexes. The same protein often participates in different complexes to exhibit diverse functionality. Current ensemble approaches of identifying cellular protein interactions cannot reveal physiological permutations of these interactions. Here we describe a single-molecule pull-down (SiMPull) assay that combines the principles of a conventional pull-down assay with single-molecule fluorescence microscopy and enables direct visualization of individual cellular protein complexes. SiMPull can reveal how many proteins and of which kinds are present in the in vivo complex, as we show using protein kinase A. We then demonstrate a wide applicability to various signalling proteins found in the cytosol, membrane and cellular organelles, and to endogenous protein complexes from animal tissue extracts. The pulled-down proteins are functional and are used, without further processing, for single-molecule biochemical studies. SiMPull should provide a rapid, sensitive and robust platform for analysing protein assemblies in biological pathways.  相似文献   

11.
Nanoscale imaging magnetometry with diamond spins under ambient conditions   总被引:1,自引:0,他引:1  
Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques, but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells, and magnetic resonance force microscopy has succeeded in detecting single electrons and small nuclear spin ensembles. However, this technique currently requires cryogenic temperatures, which limit most potential biological applications. Alternatively, single-electron spin states can be detected optically, even at room temperature in some systems. Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.  相似文献   

12.
 单细胞捕获是单细胞水平研究的前提和重要组成部分。微流控芯片通常具有与细胞尺寸相当的微通道结构,并能操控纳升至皮升级的极小体积流体,非常适用于高通量的单细胞捕获,加上微流控芯片能够将其他多种操作单元集成在一起,为单细胞分析提供了一种效率高、消耗低的研究平台。概述并对比了多种涉及流体力学、光、电、磁、声等领域的微流控单细胞捕获技术的原理和应用,展望了其未来的研究方向。  相似文献   

13.
R Henning  J Lange-Mutschler 《Nature》1983,305(5936):736-738
Simian virus 40 (SV40) large T antigen, a multifunctional protein necessary for lytic growth and cell transformation, is located mainly in the nucleus and in small amounts on the cell surface (surface T). Surface T may have a passive role in SV40 tumour rejection by cytotoxic T cells as a component of SV40-TSTA (tumour-specific transplantation antigen). The unusual induction of this immune response by immunizing mice with soluble T antigen led us to investigate the in vitro binding of T antigen to the surface of living cells in more detail. Our results show that native surface T and a minor subset of large T antigen having a high cell surface binding affinity in vitro, behave like integral membrane proteins. Several viral proteins including SV40 T antigen and cellular proteins seem to be linked to fatty acids (acylation). To analyse whether this mechanism is involved in the stable attachment of in vitro-bound T antigen to the plasma membrane of living target cells, we determined the degree of labelling of this molecule by using target cells prelabelled with 3H-fatty acid. Here we report that T antigen extracted from unlabelled SV40-transformed cells (SV80) becomes 3H-labelled after in vitro binding to the cell surface of 3H-palmitate-prelabelled HeLa cells. These results suggest that T antigen attached externally to living cells, may be anchored by tightly linked lipids.  相似文献   

14.
原子力显微镜(AFM),能够在接近生理条件下以具有原子级的分辨率对活细胞进行表面成像和超微结构观察,同时可以研究细胞的生物过程、细胞与药物之间和细胞之间的相互作用,成为细胞生物学研究的一种有效工具.近年来AFM在细胞生物学研究中的应用进展很快,许多研究成果在生物医学和临床医学方面有良好的应用前景.本文分析了原子力显微镜的成像机理、工作模式和技术要点,综述了原子力显微镜在癌细胞的研究应用现状和前景.  相似文献   

15.
Cell-free system is interesting and useful for studying nuclear assembly in mitosis. Atomic force microscopy (AFM), which is a simple way for imaging fixed reassemble nuclei with high resolution, has not been used in the cell-free system. In this paper, we put forward an air-drying sample preparation for AFM. Using AFM, we observed nuclear reassembly process within 100 nm resolution in a cell-free system. As a result, we found that the images were artifact-free, and with higher resolution compared with fluorescent optical microscope images. Furthermore, the morphology of membrane vesicles was obtained dearly, and a dynamic change of morphology during the vesides‘‘ approaching to nuclear envelope was also observed, which is enlightened to understand the mechanism of nuclear envelope assembly.  相似文献   

16.
Ohki K  Chung S  Ch'ng YH  Kara P  Reid RC 《Nature》2005,433(7026):597-603
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 microm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 microm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.  相似文献   

17.
Zürner A  Kirstein J  Döblinger M  Bräuchle C  Bein T 《Nature》2007,450(7170):705-708
Periodic mesoporous materials formed through the cooperative self-assembly of surfactants and framework building blocks can assume a variety of structures, and their widely tuneable properties make them attractive hosts for numerous applications. Because the molecular movement in the pore system is the most important and defining characteristic of porous materials, it is of interest to learn about this behaviour as a function of local structure. Generally, individual fluorescent dye molecules can be used as molecular beacons with which to explore the structure of--and the dynamics within--these porous hosts, and single-molecule fluorescence techniques provide detailed insights into the dynamics of various processes, ranging from biology to heterogeneous catalysis. However, optical microscopy methods cannot directly image the mesoporous structure of the host system accommodating the diffusing molecules, whereas transmission electron microscopy provides detailed images of the porous structure, but no dynamic information. It has therefore not been possible to 'see' how molecules diffuse in a real nanoscale pore structure. Here we present a combination of electron microscopic mapping and optical single-molecule tracking experiments to reveal how a single luminescent dye molecule travels through linear or strongly curved sections of a mesoporous channel system. In our approach we directly correlate porous structures detected by transmission electron microscopy with the diffusion dynamics of single molecules detected by optical microscopy. This opens up new ways of understanding the interactions of host and guest.  相似文献   

18.
Imaging the biogenesis of individual HIV-1 virions in live cells   总被引:1,自引:0,他引:1  
Jouvenet N  Bieniasz PD  Simon SM 《Nature》2008,454(7201):236-240
Observations of individual virions in live cells have led to the characterization of their attachment, entry and intracellular transport. However, the assembly of individual virions has never been observed in real time. Insights into this process have come primarily from biochemical analyses of populations of virions or from microscopic studies of fixed infected cells. Thus, some assembly properties, such as kinetics and location, are either unknown or controversial. Here we describe quantitatively the genesis of individual virions in real time, from initiation of assembly to budding and release. We studied fluorescently tagged derivatives of Gag, the major structural component of HIV-1-which is sufficient to drive the assembly of virus-like particles-with the use of fluorescence resonance energy transfer, fluorescence recovery after photobleaching and total-internal-reflection fluorescent microscopy in living cells. Virions appeared individually at the plasma membrane, their assembly rate accelerated as Gag protein accumulated in cells, and typically 5-6 min was required to complete the assembly of a single virion. These approaches allow a previously unobserved view of the genesis of individual virions and the determination of parameters of viral assembly that are inaccessible with conventional techniques.  相似文献   

19.
Schroeder T 《Nature》2008,453(7193):345-351
The ability to observe biological processes continuously, instead of at discrete time points, holds great promise for the study of tissue regeneration. Ideally, single cells would be followed continuously within large tissue volumes (such as organs) over long periods of time. Technical limitations, however, preclude such studies. But, recently, there have been improvements in imaging technologies and biologically compatible labelling agents. Together with new insights into the molecular characteristics of stem cells, which are ultimately responsible for the regenerative potential of all tissues, researchers are now much closer to applying single-cell imaging approaches to research into regeneration and its clinical applications.  相似文献   

20.
Optical microscopy using a single-molecule light source   总被引:2,自引:0,他引:2  
Michaelis J  Hettich C  Mlynek J  Sandoghdar V 《Nature》2000,405(6784):325-328
Rapid progress in science on nanoscopic scales has promoted increasing interest in techniques of ultrahigh-resolution optical microscopy. The diffraction limit can be surpassed by illuminating an object in the near field through a sub-wavelength aperture at the end of a sharp metallic probe. Proposed modifications of this technique involve replacing the physical aperture by a nanoscopic active light source. Advances in the spatial and spectral detection of individual fluorescent molecules, using near-field and far-field methods, suggest the possibility of using a single molecule as the illumination source. Here we present optical images taken with a single molecule as a point-like source of illumination, by combining fluorescence excitation spectroscopy with shear-force microscopy. Our single-molecule probe has potential for achieving molecular resolution in optical microscopy; it should also facilitate controlled studies of nanometre-scale phenomena (such as resonant energy transfer) with improved lateral and axial spatial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号