首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
介绍了变压吸附原理及其发展过程,并分析了影响变压吸附的主要因素,认为吸附时间与吸附压力是影响变压吸附最主要的因素;同时,在变压吸附操作中应尽量提高吸附压力、降低解吸压力、延长吸附时间、降低产品纯度,以提高氢气回收率进而提高装置的经济效益。  相似文献   

2.
用回热器的热声原理、解释了在振荡控制的热耦合变压吸附系统的吸附柱回热器中发生的传热和传质过程,并将其应用于热耦合变压吸附的热声网络模型.在热声网络模型中,当地压力是时间和空间二者的函数,这不同于传统观点即认为当地压力仅是时间的函数,该网络模型能对变压吸附过程进行动态分析.  相似文献   

3.
用高性能制氧分子筛变压吸附   总被引:1,自引:0,他引:1  
对沸石分子筛进行离子交换改性,同时严格控制成型活化条件,开发出变压吸附空分用系列高性能制氧分子筛。测试其氮、氧静态吸附等温线以及吸附热数据,并对数据结果进行分析。这为进一步开发和优化变压吸附制氧过程提供了良好的基础。  相似文献   

4.
SARS患者专用微型制氧机工艺参数实验研究   总被引:9,自引:4,他引:9  
为了开发用于SARS病人的微型变压吸附制氧机,实验研究了吸附时间、反吹比、产品气量、吸附塔高径比以及吸附剂种类等工艺参数对微型变压吸附分离空气制氧装置的产品纯度和回收率的影响.实验结果表明:在变压吸附微型化条件下,最佳的吸附时间为12 s和反吹比为0.5;随着产品气流量的增加,产品气纯度下降,而回收率升高,在所要求的纯度下,回收率能达到19%;吸附剂的种类对变压吸附制氧过程有重要的影响;在微型化条件下,合适吸附塔的高径比为3.7~4.0之间.  相似文献   

5.
提出以椰壳预炭化料为骨料、酚醛树脂为黏结剂制备变压吸附空分制氮用炭分子筛的新工艺路线,包括成型、炭化、水蒸气活化、两步苯气相碳沉积调孔等主要工序;完善了炭分子筛的变压吸附空分评价手段,即以变压吸附空分为基本手段,结合变压吸附脱附尾气总量及其中O2浓度等参数分析,准确表征炭分子筛制备过程中样品的微孔孔容和孔径变化,从而实现对炭分子筛制备工艺参数的精确控制.所得的椰壳基炭分子筛具有较高的抗压强度,其变压吸附空分性能接近商业炭分子筛产品.  相似文献   

6.
研究了采用沸石分子筛和碳分子筛吸附床的变压吸附制高纯氧工艺以及采用基于PLC控制系统对流量、压力和电磁阀进行的调节和控制,确立了两级变压吸附制高纯氧的工艺流程和各吸附床的最佳吸附周期,分析了排气量对氧气纯度的影响.实验结果表明氧气的最高纯度可达到99.5%.  相似文献   

7.
应用动态柱穿透法测定的空气中氮-氧吸附平衡数据模拟两床真空变压吸附(VSA)空分制氧中等温与非等温过程;在VSA过程模拟中探讨了吸附压力、进料流量和冲洗比等过程操作条件以及吸附过程中温度的变化对产品气氧的纯度、收率和产率的影响,为VSA空分制氧过程提供一定的设计依据。  相似文献   

8.
采用变压吸附(PSA)装置提纯含氢流股并回用至加氢过程,可以缓解炼油厂氢气亏缺的现状。该文采用了变压吸附简化模型,构建了提纯回用氢网络模型,以氢公用工程用量为目标函数,建立优化的数学模型,使用商业优化软件GAMS(general algebraic modeling system)平台建模,用DICOPT(discrete and continuous optimizer)作为求解器。案例研究结果表明:变压吸附装置存在最优入口氢气纯度。当吸附和解吸压力比增大、吸附选择性减小时,变压吸附的氢气回收率增大,氢公用工程用量减小。从氢网络优化的角度来说,一味地增加变压吸附装置入口流股氢气纯度以提高回收率的手段并不可取。  相似文献   

9.
测试了微型制氧吸附剂的平衡吸附特性,在此基础上选出适合快速真空变压吸附制氧的吸附剂. 针对传统的单塔两步快速变压吸附制氧含量低问题,提出了提高产品气氧含量的单塔快速变压吸附制氧的排放气和原料气组合充压流程,并对该流程进行实验研究. 结果表明:在单塔快速真空变压吸附制氧过程中,采用排放气和原料气组合充压流程可以有效提高产品气氧含量. 充压前排放气的压力和氧含量是影响产品气氧含量的关键参数,采取合适的排放气压力和较高氧含量的排放气可获得更高的产品气氧含量. 在吸附和解吸压力分别为240 kPa和60 kPa时,采用排放气和原料气组合充压的快速真空变压吸附流程可获得氧体积分数90%的产品气,其产氧率为325. 08 L·h-1·kg-1 .  相似文献   

10.
变压吸附气体分离技术是一种重要的气体分离技术,并广泛应用于工业领域。本文分析了变压吸附分离技术的特点,介绍了变压吸附技术的应用现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号