首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).  相似文献   

2.
Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.  相似文献   

3.
The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.  相似文献   

4.
The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.  相似文献   

5.
Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z 相似文献   

6.
The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.  相似文献   

7.
Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.  相似文献   

8.
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.  相似文献   

9.
Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.  相似文献   

10.
Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.  相似文献   

11.
Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.  相似文献   

12.
Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.  相似文献   

13.
The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.  相似文献   

14.
Two classes of rotating neutron stars-soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars-are magnetars, whose X-ray emission is powered by a very strong magnetic field (B approximately 10(15) G). SGRs occasionally become 'active', producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst. Here we report that SGR 1806-20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 x 10(46) erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron star's magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard gamma-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.  相似文献   

15.
Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.  相似文献   

16.
Observations of the long-lived emission--or 'afterglow'--of long-duration gamma-ray bursts place them at cosmological distances, but the origin of these energetic explosions remains a mystery. Observations of optical emission contemporaneous with the burst of gamma-rays should provide insight into the details of the explosion, as well as into the structure of the surrounding environment. One bright optical flash was detected during a burst, but other efforts have produced negative results. Here we report the discovery of the optical counterpart of GRB021004 only 193 seconds after the event. The initial decline is unexpectedly slow and requires varying energy content in the gamma-ray burst blastwave over the course of the first hour. Further analysis of the X-ray and optical afterglow suggests additional energy variations over the first few days.  相似文献   

17.
Loeb A  Waxman E 《Nature》2000,405(6783):156-158
The Universe is filled with a diffuse background of gamma-ray radiation, the origin of which remains one of the unsolved puzzles of cosmology. Less than one-quarter of the gamma-ray flux can be attributed to unresolved discrete sources, such as active galactic nuclei; the remainder appears to constitute a truly diffuse background. Here we show that the shock waves induced by gravity in the gas of the intergalactic medium, during the formation of large-scale structures like filaments and sheets of galaxies, produce a population of highly relativistic electrons. These electrons scatter a small fraction of the cosmic microwave background photons in the local Universe up to gamma-ray energies, thereby providing the gamma-ray background. The predicted diffuse flux agrees with the observed background across more than four orders of magnitude in photon energy, and the model predicts that the gamma-ray background, though generated locally, is isotropic to better than five per cent on angular scales larger than a degree. Moreover, the agreement between the predicted and observed background fluxes implies a mean cosmological density of baryons that is consistent with Big Bang nucleosynthesis.  相似文献   

18.
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude approximately 23) associated with a short burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.  相似文献   

19.
Sazonov SY  Lutovinov AA  Sunyaev RA 《Nature》2004,430(7000):646-648
Much of the progress in understanding gamma-ray bursts (GRBs) has come from studies of distant events (redshift z approximately 1). In the brightest GRBs, the gamma-rays are so highly collimated that the events can be seen across the Universe. It has long been suspected that the nearest and most common events have been missed because they are not as collimated or they are under-energetic (or both). Here we report soft gamma-ray observations of GRB 031203, the nearest event to date (z = 0.106; ref. 2). It had a duration of 40 s and peak energy of >190 keV, and therefore appears to be a typical long-duration GRB. The isotropic gamma-ray energy of < or =10(50) erg, however, is about three orders of magnitude smaller than that of the cosmological population. This event--as well as the other nearby but somewhat controversial GRB 980425--is a clear outlier from the isotropic-energy/peak-energy relation and luminosity/spectral-lag relations that describe the majority of GRBs. Radio calorimetry shows that both of these events are under-energetic explosions. We conclude that there does indeed exist a large population of under-energetic events.  相似文献   

20.
Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号