首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 60 毫秒
1.
利用覆盖粗糙集研究信息系统的属性约简.首先,回顾了覆盖粗糙集的基础知识,然后提出了相关类的概念以及几个相关定理,并且逐步阐述如何用相关类的方法来进行属性约简,最后用例子证明了此方法的可行性,并得出结论.  相似文献   

2.
为了去除系统中的冗余属性,保持系统的分类能力,研究了连续值分布式数据的属性约简.给出了连续值分布式决策信息系统中邻域粗糙集的定义,讨论了分布式连续值决策信息系统中正域计算的可分解性.以保持分布式决策信息系统的正域不变为前提,探讨了分布式决策信息系统中属性的可约性,提出了分布式连续值决策信息系统的属性约简算法.为了验证该算法的有效性,在7份数据集上进行了3组实验.实验使用提出的算法对分布式数据进行属性约简,进而采用加权集成的方式进行分类测试.实验结果表明,该算法能够有效去除连续值分布式数据中的冗余属性,使得约简后的连续值分布式数据的集成分类能力与约简前相差不大.甚至更高.  相似文献   

3.
在分析单一、给定的邻域大小设定方法弊端的基础上,提出了基于属性数据标准差的阁值设定方法,并将蚁群优化算法引入到属性约简中,以属性重要度为启发信息,构造了基于邻域粗糙集和蚁群优化的属性约简算法,使用了4个UCI数据集进行约简.实验结果表明,提出的算法在约简的分类精度和约简中属性个数方面具有更好的性能.  相似文献   

4.
变精度邻域粗糙集相比于邻域粗糙集具有抗噪容错的能力,但由于重新定义了下近似,正域的划分不再严格,使得属性重要度的可信度降低,在精度改变的情况下无法优先选取最优的属性.针对这一问题,分析变精度邻域粗糙集的下近似,引入邻域内的正确分类率,定义属性质量度,提出一种基于正域的增量和平均正确分类率的增率相结合的属性度量方法.通过和现有的基于属性重要度的属性约简算法做比较,实验结果表明,改进后的属性度量方法对变精度有更好的适应性,在不同变精度阈值下能得到更优的约简结果.  相似文献   

5.
属性约简是粗糙集理论研究的一个基本问题,它是一种有效的数据约简方法。然而,目前很多的属性约简算法在面对高维数据集时仍然不够高效。文中利用图论的相关理论和方法,对基于区分矩阵的粗糙集属性约简方法给出了直观和等价的刻画。在此基础上提出了基于图论的粗糙集属性约简方法。实验结果表明,新的属性约简算法在面对较大规模的数据集,尤其是高维的数据集时,不仅能有效地降低数据的维数,同时运行速度快且能保持较高的分类精度。  相似文献   

6.
基于粗糙集属性约简的模糊模式识别   总被引:3,自引:1,他引:3  
通过运用粗糙集归约理论对资料进行浓缩和筛选,略去不必要的属性,简化数据。用模糊模式识别确定对象应当归属的模式,给出其对于各个模式的相对隶属度,从而达到分类目的。经实例计算,得到了较好的结果。  相似文献   

7.
将基于单隐层前馈神经网络(SLFN)提出的极速学习机(ELM)算法和邻域粗糙集理论进行结合,提出基于邻域粗糙集的极速学习机算法,采用邻域粗糙集对样本集进行属性约简,去掉冗余属性,利用ELM对约简后的数据集进行学习,并对数据样本进行预测。实验表明ELM算法相比具有更高的训练精度和测试精度。  相似文献   

8.
陈胜  曾雪兰  梅良才 《广西科学》2009,16(4):389-391
在分析贝叶斯粗糙集模型已有的约简算法的基础上,从含有多个决策类情况下的全局相对增益函数的角度,利用二进制编码方法给出一种求贝叶斯粗糙集所有约简及核的算法,并基于实际应用,给出对求出的所有约简进行筛选的拓展算法。通过算例说明算法的实用性和有效性。  相似文献   

9.
将单个属性按照B精度的均值和方差决定的属性重要性,从大到小依次加入到约简属性中.对重要性相等的属性,再计算划分的B精度来决定加入哪些属性,直到满足约简条件为止.与不用属性重要性的算法相比,计算量较少,提高了计算速度.  相似文献   

10.
基于邻域关系提出一种综合考虑正域和边界数据的属性约简方法.该方法利用邻域关系对数据进行离散化处理,通过定义基于邻域的正域属性重要度、边界属性重要度和邻域综合属性重要度概念,设计一种新的启发式属性简约算法.该算法从空约简集出发,利用邻域属性重要度启发式搜索属性空间以扩展约简属性集,理论分析和实验表明该算法有效可行.  相似文献   

11.
一个改进的粗糙集属性约简算法   总被引:12,自引:1,他引:12       下载免费PDF全文
利用单属性的逼近精度 ,在Jelonek属性约简算法的基础上 ,得到一个改进的属性约简算法 .实例计算结果表明 ,在获得同样的属性约简的情况下 ,该算法与Jelonek算法相比 ,计算量较少 ,提高了计算速度 .  相似文献   

12.
通过对大量旅游突发事件的样本数据进行分析和处理,给出了旅游突发事件中决策系统的构建过程,该过程包括属性提取、属性分类(将属性分为条件属性集和决策属性集)和数据清洗.然后在此基础上构建了一个广泛适用的决策表,并应用粗糙集中基于Pawlak属性重要度的属性约简算法对该决策表进行了属性约简.经过属性约简后,在保持决策表的条件属性和决策属性依赖关系不变的前提下,降低了决策表相对于决策属性的条件属性个数,减少了论域的样本数目,从而可以得到一个更有价值的决策表系统.实验结果表明,在约简后的决策表中可更容易地得出简洁实用的决策规则,甚至可以发现一些潜在的决策关系,能在一定程度上提高旅游突发事件关联规则的获取和决策能力.  相似文献   

13.
基于邻域的变精度覆盖粗糙集模型中,β上,下覆盖近似算子的交不保持交运算。通过定义一对新的覆盖边界上,下算子,并讨论了它们的性质。应用新定义的算子,能够将覆盖上下近似算子交运算的不等式变成等式,防止了信息的丢失。  相似文献   

14.
云计算技术是海量数据挖掘的一种高效解决方案,将MapReduce并行计算模型与粗糙集属性约简算法相结合,提出一种基于MapReduce的浓缩布尔矩阵并行属性约简算法.该算法提高了粗糙集属性约简算法对大数据的处理能力和效率,并能适应云计算环境.实验结果表明,所提算法具有良好的效率、加速比和可扩展性.  相似文献   

15.
基于粗糙集的属性约简的矩阵方法   总被引:6,自引:0,他引:6  
粗糙集理论中,属性约简是知识挖掘的核心。知识获取是根据对象间的某种关系如等价关系、相似关系等来定义。受关系的矩阵表示的启发,本文提出知识的矩阵表示以及属性约简的矩阵方法,这种表示和约简方法具有形式简单规范、运算工整的特点。实例验证了该方法的合理性和有效性。  相似文献   

16.
研究基于粗糙集的属性约简算法在数据挖掘规则提取阶段的应用。数据挖掘中对属性进行约简时,经常采用粗糙集,再按照规则进行提取。考察差别矩阵的定义和信息系统比较复杂且核属性元素所占比例较少的情况,改进基于差别矩阵的属性约简算法,利用差别矩阵的结构建立一种新的选择属性的依据。  相似文献   

17.
海量数据属性约简的研究是数据挖掘研究中的一个难点.已有的许多属性约简算法对于空间复杂度考虑得不够,导致了算法不能适应大数据集的约简处理.结合分治法,在给定属性序下,提出了基于分治策略的属性约简算法.利用该算法可以快速得到海量数据的属性约简结果.仿真实验结果说明了该算法的高效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号