首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
针对现有的3种最具代表性的卫星星座设计方法的缺点,提出了层次递进的卫星星座设计方法.该方法采用基于CART算法的卫星星座原始构型选择策略,可将星座构型的求解空间缩小至少53.3%.利用CART6.0软件构建了选择卫星星座原始构型子集的CART树,运行速度达到7.9s,分类精度达到97.15%,10阶交叉验证的相对成本为0.033.结果表明:采用这种策略选择卫星星座原始构型还具有可扩展性强、准确性高和易于实现的优点,为卫星星座构型模块化设计建立了良好的基础.  相似文献   

2.
在Flower星座设计方法的基础上,提出了一种新的区域卫星导航系统设计方法.利用2个Flower星座,通过Flower星座模型精确计算导航Flower星座(NFC)中每个卫星的6个轨道参数,得到一个区域卫星导航系统NFC.NFC可以分阶段部署,开始由8颗卫星组成,补充发射6颗卫星以后组成完整的系统.对中国区域的几何精度因子(GDOP)仿真证明,NFC的平均GDOP值为2.113.与国内已经提出的几种区域导航系统及GPS,GLONASS,Galileo等全球卫星导航系统相比,NFC的GDOP性能与Galileo系统相当,远优于其他系统.NFC较高的导航精度和经济性证明基于Flower星座的区域卫星导航系统设计方法是有效的.  相似文献   

3.
针对卫星星座系统一体化设计方法运算开销庞大的缺陷,提出了卫星星座构型分层优化策略,其核心是改进了非支配排序算法的非劣性分层遗传算法(NSGA-II).新的非支配排序算法结合了Jensen的递归方法和快速排序法的优点,其鲁棒性优于递归方法和快速排序法,改进的NS-GA-II算法其计算复杂度O(MNlog N)也远小于原NSGA-II算法的O(MN2).最后,将新的优化策略用于区域导航卫星星座构型的优化设计,并利用Matlab和Satellite Tool Kit(STK)对星座进行了仿真.仿真结果表明,设计的导航星座位置定位精度平均值达到2.73,采用新的优化策略的运算开销为采用原优化策略的13.3%,大大降低了卫星星座构型优化设计的运算开销,为卫星星座系统一体化设计方法的实用化建立了良好的基础.  相似文献   

4.
低轨卫星星座具有几何图形变化快、落地信号功率强、全球天基监测覆盖等天然优势,可对中高轨全球导航卫星系统(Global Navigation Satellite System,GNSS)星座进行有效补充和增强,提升全球定位、导航与授时(Positioning,Navigation and Timing,PNT)服务的精度、完好性、可用性和抗干扰等能力,已成为下一代卫星导航系统重要的发展方向.本文总结了国内外低轨星座发展现状,对不同低轨星座进行了分析和设计,对低轨星座提升导航定位精度、加速精密单点定位(Precise Point Positioning,PPP)收敛、全球天基监测等导航增强能力进行了分析,重点论证了低轨星座突破现有中高轨GNSS技术瓶颈的机遇和体系增量能力,给出了相应的仿真分析结果,以期对我国低轨星座和北斗卫星导航系统的融合发展提供参考和建议.  相似文献   

5.
针对当前国际卫星导航应用从单一GPS时代发展到多GNSS(全球卫星导航系统)时代带来的新趋势和新要求,本文从星座互操作、信号互操作、时间互操作和坐标互操作四个方面开展北斗三号系统与其他GNSS系统间的互操作设计.在星座设计方面,北斗三号的星座轨道高度与倾角设计与GPS,GLONASS和Galileo三大系统的星座充分互补,全球导航卫星PDOP平均可提升37.9%;在信号体制方面,北斗三号通过相同频率相似频谱设计实现与其他系统的互操作,并签署了兼容与互操作协议,可确保用户在不改变硬件设计的情况下同时使用各大系统导航服务;在时间基准与坐标基准方面,北斗三号系统建立与维持了与国际上高度一致的基准体系,实现与国际UTC,GLNT等时差偏差保持在50 ns以内,并与国际ITRF 2014坐标参数精度保持一致.因此,北斗三号系统通过四个方面的努力,实现了与其他GNSS的互操作,可联合美俄等全球卫星导航系统为全球用户提供更优质的服务.  相似文献   

6.
支持垂直引导进近的多星座RAIM算法   总被引:3,自引:0,他引:3  
为了充分利用未来的全球导航卫星系统(GNSS)中多星座多频点的卫星信号,使接收机自主完好性监测(RAIM)技术能够用于垂直引导进近(APV)飞行阶段,提出了一种基于双星故障假设的多星座RAIM算法。算法将全部可见卫星分为3组,分别计算定位解,对3个分组定位解加权平均作为最终的定位解,通过迭代寻找最优加权因子,使得在满足定位精度要求的前提下极大化算法的可用性。仿真结果表明:该算法能够以100%的可用性支持APV-Ⅰ飞行阶段,以高于99%的可用性支持APV-Ⅱ飞行阶段。  相似文献   

7.
北斗三号全球卫星导航系统于2020年6月23日和7月31日分别完成全球星座部署和正式开通服务公告,这标志着北斗从无到有、从有到优、从区域到全球的“三步走”发展战略圆满完成.北斗三号全球卫星导航系统空间段由24颗中圆地球轨道卫星、3颗地球静止轨道卫星和3颗倾斜地球同步轨道卫星共30颗卫星组成,具备导航定位和通信数传两大功能,可提供定位导航授时、全球短报文通信、区域短报文通信、国际搜救、星基增强、地基增强、精密单点定位共7类服务,全球范围定位精度优于10 m、测速精度优于0.2 m/s、授时精度优于20 ns、服务可用性优于99%,亚太地区性能更优.  相似文献   

8.
<正>卫星导航与位置服务已成为全球范围内迅速崛起的新兴产业,我国卫星导航位置服务产业伴随着北斗卫星导航系统的建设正迈向大发展阶段。2018年是北斗系统发展史上极不平凡的一年,也是北斗系统建设任务最为繁重的一年。高强度、高密度的发射建成了北斗三号系统。我国在12个月内成功发射19星,创下了世界卫星导航系统建设的奇迹,也是我国航天发射的新纪录。2018年11月19日,随着两颗组网卫星顺利升空,我国完成了北斗三号基本系统星座部署,迈出北斗导航系统从区域走向全球的关键一步。  相似文献   

9.
为实现信号遮挡严重区域伪卫星增强GPS系统的最优导航定位性能,提出了增强星座优化模型及基于改进蚁群算法的实现方法.首先,根据恶劣定位环境可见GPS卫星时空分布不均的特点,基于精度、可用性、连续性等导航性能指标以及系统投入成本和工程地质、地形条件建立增强星座的优化模型.然后,针对该模型主要评价指标的特点,利用改进的蚁群算法实现伪卫星最优位置的搜索.结合具有典型峡谷特征的小湾电站2号山梁相关实验,从多角度给出建立优化模型的准则及其对搜索算法的影响.实验结果表明,经优化设计后该区域的导航定位性能提高了35%~70%,能够满足形变监测系统的设计要求.  相似文献   

10.
正据中国卫星导航系统管理办公室消息:今年,北斗卫星导航系统将继续高密度全球组网,计划发射8至10颗北斗导航卫星,完成所有MEO卫星发射,进一步完善全球系统星座布局,全面提升系统服务性能和用户体验。自去年底北斗三号工程建成基本系统、开通全球服务以来,北斗系统运行平稳,经全球范围测试评估,在全球区域定位精度优于10米,在亚  相似文献   

11.
基于后处理精密产品,评估了2015-06-01—2018-06-30北斗广播星历的性能精度.对北斗系统性能精度评估的基准问题进行了讨论,统计分析了北斗系统不同星座卫星的轨道差值与星钟差值的长期变化趋势,表明北斗系统空间信号测距精度有逐年提升的趋势.还发现北斗广播星历在2017-01-17前后做出的调整具有较好的效果,不同卫星轨道径向产生一个非零均值的偏差,分析表明该径向偏差更好地实现了轨道径向与卫星星钟参数的自洽,进而大大提高了北斗系统空间信号测距精度.并且北斗系统在2017-07-22对广播星历TGD参数进行了更新,提高了卫星钟差精度.采用4个MGEX测站数据的伪距单点定位验证北斗空间信号精度提升对北斗系统基本导航定位服务的影响,结果表明北斗系统在2017年2次更新后,北斗基本导航定位精度在NEU三个方向分别提升41%、49%和39%.2018年1—6月的统计结果表明,目前北斗系统的IGSO卫星空间信号测距精度最高,优于0.8 m,GEO与MEO卫星次之,约为1 m.  相似文献   

12.
随着非静止轨道(non-geostationary orbit,NGSO)卫星系统数量的增加,使用相同频率的NGSO卫星系统之间相互干扰的问题日益凸显。由于NGSO卫星系统干扰场景具有卫星数目众多和相对关系时变等特点,因此针对静止轨道(geostationary orbit,GSO)卫星系统间干扰的传统仿真方法和评价体系不再适用。该文根据国际电信联盟相关的规则和建议,建立了NGSO卫星系统干扰分析数学模型,提出了卫星星座干扰分析的链路夹角概率分析方法;针对NGSO卫星数目众多和时空关系时变等复杂特征给出了全球场景下NGSO全星座干扰分析的方案,提出了星座间产生有害干扰的概率计算方法和星座可用性指标。在实际卫星网络资料的基础上,以OneWeb系统和O3b系统为例,计算了卫星系统间干扰保护的链路夹角限值范围,并给出了全球范围内卫星链路夹角、干扰状态及可用性比例的概率分布结果,为NGSO星座干扰分析提供了一种可参考的手段。  相似文献   

13.
讨论中低轨卫星移动通信的系统设计问题 ,包括星座设计、覆盖率统计和通信线路计算等问题。运用统一建模语言UML、面向对象可视化编程软件Delphi、科学计算软件Matlab、动画制作软件Animator等工具 ,研制了中低轨卫星移动通信系统设计综合软件 ,并以此设计了我国中低轨卫星移动通信系统的星座方案各一套 ,同时完成了星座实时动态演示 ,并能实时对全球、中国、北美、欧洲进行覆盖率动态统计和通信线路计算。  相似文献   

14.
多路径效应对于卫星导航一直是难以有效克服的问题,近年来一直是国内外相关学者们致力研究的重要课题。本文利用某型高精度监测接收机在(23°17′N,116°40′E)对北斗卫星的观测数据,分析了北斗系统IGSO、GEO以及MEO这3种类型卫星观测数据的多路径效应。结果表明:北斗系统的卫星高度角与其多路径值成负相关;北斗系统的卫星频点B1和频点B2的多路径值变化情况基本相同;北斗系统的卫星多路径值在高度角低于30°时波动较大。  相似文献   

15.
为了验证与分析全球定位系统(GPS)与北斗卫星导航系统联合定位相较于GPS单系统定位在亚太地区的优势,利用GPS/北斗双频双模接收机开展不同模式下的动/静态单点定位实验和实时动态差分法(RTK)实验,并通过对实测数据的分析,给出了北斗导航卫星对GPS单系统定位的影响.结果表明,GPS/北斗双系统卫星观测相对于GPS单系统在卫星可视数量、卫星对于测站的几何分布、扩大连续运行参考站系统(CORS)网的作用范围等方面有很大的优势,而且双系统组合定位算法有效地提高了接收机的定位性能.  相似文献   

16.
为了满足编队系统空间基线稳定性要求,在考虑J2摄动基础上提出了一种面向任务要求的编队轨道设计方法.在初步确定编队轨道参数后对从卫星平均半长轴进行了小量修正,从而使得系统满足稳定性要求,检验了编队系统空间基线性能.研究结果表明,该方法设计的编队初始轨道参数能使空间基线保持基本稳定,能够满足地面高程测量(DEM)和慢动目标检测(GMTI)的任务要求.  相似文献   

17.
分析和确定了Flower星座的优化参数,从参数编码、适应度评价和算法流程设计三个方面进行讨论,给出了Flower星座的遗传算法优化模型.利用自行开发的卫星星座仿真软件SatSim (satellite simulation)和STK (satellite tool kit)工具包,设计了适合中国区域通信的三个Flower星座并进行了性能分析.仿真结果表明,4和5颗星的星座在最小仰角10°的条件下对中国的平均覆盖率分别为97.26 %和99.24 %;6颗星的星座在最小仰角15°的条件下对中国的平均覆盖率为99.88 %,基本实现对中国的连续覆盖,可以满足卫星移动通信的需求.  相似文献   

18.
冯昭奎 《世界知识》2020,(17):64-66
2020年8月3日,中国卫星导航系统管理办公室主任冉承其在国务院新闻发布会上介绍,北斗卫星导航系统提前半年完成全球星座部署,开通全系统服务。北斗500余种核心部件全部实现了国产化,包括星间链路、髙精度原子钟等核心高技术难题已经全部攻克。由24颗中圆地球轨道卫星、3颗地球静止轨道卫星和3颗倾斜地球同步轨道卫星。  相似文献   

19.
目前互操作已经成为世界各主要卫星导航系统关注和研究的重要问题,北斗作为重要GNSS系统之一,也在研究互操作的有关问题.GPS和Galileo利用在中心频率为1575.42MHz的L1/E1频段上分别调制TMBOC和CBOC信号,实现了两个系统间的互操作.我们给出了互操作的概念,分析了互操作的需求,利用卫星轨道数据验证了系统间互操作可有效增加接收机可视卫星数目,改善DOP值.利用码跟踪误差和多径包络曲线分析了GPS和Galileo互操作信号性能,最后初步探讨了北斗与GPS,Galileo进行互操作的方式.  相似文献   

20.
导航信号结构是卫星导航系统的核心技术之一,也是我国北斗三号卫星导航系统独立建设、自主运行的标志.本文分析了北斗三号B1频点卫星导航信号设计的需求与挑战,详细介绍了为满足北斗三号新一代导航信号性能提升、多样化接收以及与其他导航系统兼容与互操作等方面的迫切需求,我们为北斗三号主用信号B1C提出了一种新型的正交复用二进制载波偏移(Quadrature Multiplexed Binary Offset Carrier,QMBOC)调制技术,以及为解决北斗三号B1频点新旧两代和军民两类导航信号并存的重大技术难题,提出了一种通用的多频多分量导航信号恒包络复用(CEMIC)技术,并通过对北斗三号组网卫星实际播发的信号接收处理与分析,验证了新一代B1频点信号的先进性能.QMBOC调制和CEMIC复用构成了北斗三号B1信号的核心结构,在很大程度上决定了信号的时频域特性、接收性能及发射效率,目前已经部署在北斗三号所有的组网卫星上并开始向全球提供服务,成为北斗三号赶超世界先进水平的重要特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号